
 Eindhoven University of Technology

MASTER

Knowledge Graphs for Improving Robot Operations in Logistics

Barenholz, Daniel

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fff212dd-3a7d-4258-affb-32b1f531a5a6

Knowledge Graphs for
Improving Robot

Operations in Logistics

Master Thesis

Daniël Barenholz

Eindhoven University of Technology
Department of Mathematics and Computer Science

Process Analytics

Supervisors:
Eindhoven University of Technologies Dirk Fahland

Vanderlande Industries B.V. Roel van den Berg
Vanderlande Industries B.V. Jorn Bakker

Version 1.0

Utrecht, Eindhoven 2022

Abstract

Vanderlande is a company providing future-proof logistic process automation in, amongst oth-
ers, warehousing for the food segment. This segment requires high availability and diversity
of products with a limited workforce. To combat aforementioned problems within the food
segment, Vanderlande has developed the STOREPICK evolution: a robotised, end-to-end
Automated Case-Picking (ACP) warehousing solution, consisting of various modules, each
with their own dataset(s). This thesis is the first data-driven approach to making Vander-
lande’s ACP solution more robust against errors. Part of the STOREPICK evolution is a
palletizer cell, where a robot arm grabs and places cases on top of a pallet. We call this
process (automated) palletisation. Notice how the palletisation process occurs in a physical
setting. We implement a proof of concept data integration pipeline to construct a knowledge
graph describing the physical palletisation process from the various available datasets, and
evaluate which questions (about the palletisation process) can be answered reliably, either by
querying it or using visual analytics. During this exploration on the usecase of knowledge
graphs for modelling both a physical setting in tandem with its process for the purpose of
detecting machine faults, we find that there is a critical data quality issue with respect to the
recorded Z axis values of cases on pallets. We discuss the consequences of the data quality
issue, and provide insights into other potential usecases of the graph as data model, comparing
it to a more traditional tabular data format.

Keywords: proof of concept, reliability of machines, knowledge graphs, data integration
pipeline, data quality issues

ii Knowledge Graphs for Improving Robot Operations in Logistics

Preface

This work is the culmination of my master’s programme, and concludes my studies of Data Science
in Engineering (DSiE) at Eindhoven University of Technology (TU/e). It is the result of my
graduation project, done in cooperation with Vanderlande Industries B.V. (Vanderlande) and the
Process Analytics (PA) group of the Mathematics and Computer Science department at TU/e.

Words cannot express my gratitude to my supervisor and mentor throughout my entire master’s
programme, Dirk Fahland. Thank you for your invaluable guidance and input, and for giving me
the opportunity to take upon myself an interesting research project at Vanderlande. My thanks
also extend to my examination committee: Odysseas Papapetrou, Roel van den Berg, and Dirk
Fahland.

This endeavor would not have been possible without Vanderlande trusting me with an important
and brand-new project. There are too many people to name, but in particular I would like to
thank Jorn Bakker and Roel van den Berg for their supervision during the project. My gratitude
extends to all employees and interns alike whom I have sparred with, guiding me in which way to
tackle the problems at hand.

Lastly, I would like to mention my coworkers at Utrecht University who decided hiring me as PhD
Candidate whilst still having to finish a master’s degree poses no issues. It is incredibly to me
that I am given this amazing opportunity when other qualified candidates were available. Thanks
should also go to my friends and family for their support (and more importantly patience) the
past year.

Also: thank you, dear reader, for reading my master thesis! I hope you enjoy what you see. See
you in five years for my PhD dissertation?

Daniël Barenholz

Eindhoven,

October 2022

Knowledge Graphs for Improving Robot Operations in Logistics iii

CONTENTS CONTENTS

Contents

Contents iv

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Questions and Scope . 2
1.3 Approach and Desired Outcomes . 3
1.4 Contribution and Findings . 3

2 Background 4
2.1 Property Graphs & (Graph) Database Models . 4
2.2 Data Integration . 5
2.3 Reliability of Machines . 7
2.4 Previous Works in Vanderlande . 9

3 Business Understanding 10
3.1 STOREPICK Overview . 10
3.2 The palletizer cell . 10
3.3 The Business Problem . 14

4 Dataset Descriptions 17
4.1 SCADA . 17
4.2 Telegrams . 19
4.3 Teaching . 21
4.4 StackInfo . 22
4.5 LFL Recipes . 26

5 Data Integration 28
5.1 Join 1: SCADA + Telegram . 28
5.2 Join 2: + StackInfo . 29
5.3 Join 3: + LFL Recipes . 32
5.4 Join 4: + Teaching . 34

6 Data Model: Graph Database 35
6.1 Model Description . 35
6.2 Model Implementation . 36

7 Results 42
7.1 Node Item – see Section 6.2.2 . 43
7.2 Node Pallet – see Section 6.2.3 . 43
7.3 Relation ON – see Section 6.2.4 . 43
7.4 Relation PLACED BEFORE - see Section 6.2.5 . 44
7.5 Relation NEXT TO – see Section 6.2.8 . 45
7.6 Issue: Relation ON TOP – see Section 6.2.7 . 45

8 Discussion 48
8.1 The Data Quality Issue . 48
8.2 Graphs Usage . 49
8.3 Threats to Validity . 50
8.4 Future Work . 51

9 Conclusion 53

iv Knowledge Graphs for Improving Robot Operations in Logistics

1 INTRODUCTION

List of Figures 54

List of Tables 55

List of Codeblocks, Scripts, and Queries 56

References 57

A Appendices 61

A.1 Dataset Tables . 61

A.2 Data Model . 62

A.3 Scripts . 63

A.4 Queries . 76

1 Introduction

This section introduces the research problem of the thesis. Section 1.1 contextualises the problem.
The specific research questions and hypotheses that we wish to investigate are elaborated on in
Section 1.2. In said section we also explain the scope of the project. The approach and desired
outcomes for the project are located in Section 1.3. Finally, in Section 1.4 we briefly sketch the
contribution this thesis brings, from both a business and academic perspective.

1.1 Context and Motivation

Vanderlande is a company providing future-proof logistic process automation in various areas.
Vanderlande is the world leader in the airport area, and one of the leaders in the parcel and
warehousing areas. Their warehousing solutions are the first choice for major e-commerce players
across the globe, helping them to fulfil their promise of same-day delivery for billions of orders.
Furthermore, nine out of the fifteen largest global food retailers rely on Vanderlande’s efficient
and reliable solutions [1]. Reliability is one of the key important factors to Vanderlande’s systems.

Within the warehousing area, Vanderlande distinguishes three segments: general merchandise,
fashion, and food. The food segment in the warehousing area is the context of this work. The
key challenges within this segment are (i) High availability: when shopping in your favourite
supermarket, it is highly undesirable to see a notice that a particular product is no longer in stock.
As such, it is important that products are always available at a store. Even if it is no longer present
on a shelf, it should be easy to restock from the internal storage area. Even more, customers expect
these items to be fresh. (ii) Diversity: one person may be lactose intolerant, where the other may
have a gluten allergy. Some religions have certain requirements on how animals are slaughtered,
or even which animals are allowed to be eaten. As a supermarket one would like to be able to
provide products for all of these instances, resulting in a wide array of products, each with their
own size, weight, and other properties. (iii) Limited workforce: with the increasing demand,
there are more tasks to be completed, with fewer people to complete said tasks. To resolve this,
automation is key, which comes with its own array of (technological) problems.

To combat the aforementioned problems within the food segment, Vanderlande has developed the
STOREPICK evolution: a robotised, end-to-end Automated Case-Picking warehousing solution.
STOREPICK focuses on, amongst others, scalability, flexibility, and an agreeable user experience,
both for the end-user in a supermarket, as well as operators working behind the scenes. It consists
of various components, ranging from a control room with CCTV, to software — Load Forming
Logic (LFL) — that computes how items should be stacked on a pallet and the machinery to
automatically palletise the computed recipes [2]. An info-graphic depicting STOREPICK, which
is further explained in Section 3, is shown in Figure 1.

Knowledge Graphs for Improving Robot Operations in Logistics 1

1.2 Research Questions and Scope 1 INTRODUCTION

Figure 1: The Vanderlande STOREPICK evolution. The info-graphic shows the various compon-
ents that make up STOREPICK.

Computing and consequently executing an order from a client is non-trivial. Realise that an order
may consist of many pallets, with many different items, all which should arrive at their final
location without issues. As with many automated systems, sometimes something might go wrong,
resulting in undesired error states. In this work, we are using a data-driven approach to investigate
why the ACP part of STOREPICK sometimes enters a specific error state during palletisation
(the act of stacking items on a pallet using amongst others a robot arm), as Vanderlande wants
to minimise the occurrence of this error state.

1.2 Research Questions and Scope

In particular, we are looking at a single type of error that can happen during palletization: the
STO error. A part of the palletization system consists of a camera that hangs above the pallet
on which items are to be stacked. This camera, commonly referred to as STO (see Section 3.2.1),
takes pictures of every single related action that the palletizer performs: there is a picture when
placing the pallet, a picture for the first case, a picture for the second case, When a machine
vision component that is part of the camera believes that the picture taken shows something that
is unexpected, an STO error is raised. In short: we are looking at errors due to unexpected
behaviour exhibited during the placement of cases (the term cases is used to refer to products
being stacked), and we want to do this using a data-driven approach.

There are many possible underlying reasons, and thus underlying avenues of research, as to why
such STO errors might happen. These underlying reasons may both be hardware-related (e.g.
faulty motors, wrongly calibrated robot arm, . . .) and software-related (e.g. incorrect commands
to robot, incorrect corrections, . . .). After discussion with business experts and Vanderlande
engineers, where each scored potential underlying reasons on a scale of one (1) to ten (10), we
settled on looking into following 4 hypotheses, as these were scored highest amongst the potential
underlying reasons.

HP 1 Incorrect placements cause more STOs, further explained in Section 3.3.1.

HP 2 Building towers in the stack causes more STOs, further explained in Section
3.3.2.

2 Knowledge Graphs for Improving Robot Operations in Logistics

1 INTRODUCTION 1.3 Approach and Desired Outcomes

HP 3 Height gaps cause more STOs, further explained in Section 3.3.3.

HP 4 Overhang causes more STOs, further explained in Section 3.3.4.

1.3 Approach and Desired Outcomes

The first step of the approach is hidden, as it is already executed: identifying the main issues
to analyse. The issue to analyse is the occurrence of the STO error, particularly in accordance
with the hypotheses shown in Section 1.2. We want to use a data-driven approach to investigate
this. Any data-driven approach requires data, hence the first non-hidden step of the approach is
to acquire a suitable dataset. Data at Vanderlande is distributed over various locations, making
data acquisition a non-trivial problem. There is no universal interface to all datasets either. As
such, we need to acquire datasets from various sources, and then integrate them together. Since
this research is the first data-driven approach done at Vanderlande, it is exploratory in nature:
we desire only a proof of concept. As such, the data integration pipeline is to be made by coding
it, as opposed to using existing integration tools (see Section 2.2 for background information).

Notice that the context of the process we investigate – picking and placing products in the right
order according to some recipe – is set in the physical world. The physical setting itself influences
the process: how the robot arm places case A influences how the next case B (and also any other
cases C, D, . . . after B) is placed. As such, to answer the hypotheses posed in Section 1.2 we must
model the physical setting in tandem with the process itself. We propose to use a graph database
for this (see 2.1 for background information), as they are visual by design (good visual analytical
power for investigating the hypotheses) and we hypothesise they allow for easy modelling of a
physical setting.

In summary, there are three (3) desired outcomes to this research project.

D1 The creation of a proof of concept data model for a graph of the palletisation process.

D2 An implementation of a proof of concept data integration and processing pipeline to con-
struct such graph from available data sources.

D3 An evaluation of which questions about the palletisation process can be answered reliably
on the graph.

1.4 Contribution and Findings

For Vanderlande, our contribution and findings are defined by delivering on the three desired
outcomes: we find (Section 4) and integrate (Section 5) required datasets for modelling the process
(D2). We propose a theoretical data model (Section 6.1) for the palletisation process (D1) and
provide a proof of concept implementation in Section 6.2 (D2). We find that there is a critical
issue in the recorded data for four specific fields, making the graph unusable as-is: no questions
about the palletisation process can be answered reliably with the graph (D3).

In terms of academic contribution, this work can be seen as a case study on creating a knowledge
graph for modelling the physical setting of a process in tandem with the process itself. We show
how the graph has helped in finding the aforementioned critical issue in the recorded data (Section
7). For the four hypothesis from Section 1.2 we sketch the differences between using a graph as
data model versus a tabular format specific to the physical setting (Section 8.2). We also (very
briefly) sketch the powerful potential of the graph, should there not have been data issues (Section
8.4). This work also contributes to the field of fault detection by means of a novel approach: using
a graph data model.

Knowledge Graphs for Improving Robot Operations in Logistics 3

2 BACKGROUND

2 Background

This sections contains all relevant background information pertaining to four relevant topics:
first, we explain what a property graph is, and how it relates to the graph database model in
Section 2.1. Second, we explain the main idea behind data integration and why it is necessary in
Section 2.2. Third, we show various related items to reliability of machines in Section 2.3, starting
with machine failure (Section 2.3.1), through machine degradation (Section 2.3.2) to maintenance
scheduling (Section 2.3.3). Finally, we briefly present related work done at Vanderlande in Section
2.4.

2.1 Property Graphs & (Graph) Database Models

Databases have been around for approximately a century [3], and they typically consist of a data
model, a query language, and integrity rules [4]. The data model is a set of data structure types. It
effectively explains how data is stored. The query language generally is a set of (query) operators
or inference rules. When performing a query on the underlying data model, effectively one asks
it a question to which an answer is desired. The query language thus is related to how to use the
stored data: it is used to retrieve or derive the data that is stored in the data model. Finally,
integrity rules ensure that any CRUD (create, remove, update, delete) operation done on the
database produces again a valid database. The set of integrity rules is a collection of consistent
database states, allowed changes of states, or both [5].

In theoretical computer science, a graph is commonly defined as a tuple G = (V,E), where V
denotes a set of vertices or nodes and E denotes a set of edges. This fails to capture, however,
that there are many different types of graphs, and that these types stem from particular properties
a graph might have. Examples of these properties are: directed vs undirected edges, weighted vs
unweighted edges, labelled vs unlabelled, attributed vs unattributed, and potentially more. See
[6] for an introduction on the consequences of a graph having a certain set of properties.

Figure 2: Example property graph, illustrating the various graph properties it has, adapted from
[7].

4 Knowledge Graphs for Improving Robot Operations in Logistics

2 BACKGROUND 2.2 Data Integration

In the context of this work, when we talk about a graph, we generally refer to a (labelled) property
graph: this is a directed, labelled, and attributed multigraph. An example is shown in Figure 2.
Directed here means that edges e ∈ E have direction, illustrated by the arrow heads. Labelled
means that both nodes and edges have labels. An edge might be used to denote a specific type of
relation between its nodes, say is friends with, and nodes too may have a specific type, say person.
With attributed we mean to say that nodes (and edges) have attributes (sometimes referred to as
properties): a node of type person may store the persons name and age as attributes, and an edge
with the is friends with relation may include metadata such as since when the two people were
friends. Finally, multigraph means that between two nodes there may be multiple edges: in the
illustration John is not only friends with Sally, but they also play squash together, and go to the
same process modelling class.

A graph database is a database where the underlying data model typically is a property graph [6].
It is paired with a graph query language such as Cypher [8], which (naturally) allows for querying
the graph. Besides querying for a single node-type, or single relation-type, Cypher (and most other
graph query languages) allow for complex pattern matching. Using the same graph idea as shown
in Figure 2, an example of pattern matching is: finding all books that John’s friends have read
between 2014 and 2016, where they rated it with a score higher than four. Other examples are
finding pairs of two authors who have collaborated on multiple books, or finding authors who have
no books in common. Besides the data model and query language, there are integrity constraints
specific to a graph: the property graph schema. This schema might say that if a node p has
type person, then the node must be unique (which makes sense when modelling: every person
is unique). Other constraints that the schema might specify are mandatory property types (a
person must have a name and date of birth) or cardinality constraints (a book is allowed only
zero outgoing edges of type has read, since books themselves cannot read). For a more formal
explanation and definition of a graph database, see [6].

Property graphs and graph databases are used for various purposes. A non-exhaustive list of
various usecases from a business perspective is provided by Neo4J, creators of Cypher, in [9]. Some
fields/topics where graphs are used are supply chain management (to find potential weak links
in the supply chain faster [10]), life sciences (map patient journeys to better understand disease
progression [11]), and social network graphs (allows analysis directly on the domain model, as
social networks are already graphs [12]). In academia, graphs are also used: in [13] a property
graph is used to create an event knowledge graph, a type of knowledge graph to investigate
inter-process relations within multi-process mining. In [14] graphs are used to create a model of
the topology of a power grid network which is then used to do faster analysis than possible in
relational databases. In [15] the authors use Twitter mentions to create a graph for analysing
centrality measures. Even logging files from networks are put in a graph database in [16] to better
analyse the relations between various files.

Although above paragraph is not, nor intended to be, a formal survey of graph database and
property graph usages — we refer you to [17] — it is clear that (property) graphs are useful in
many different scenarios. As such, in this work we investigate if they are also usable for modelling
a physical process to find causes of errors in this process, directly using the available data. The
cited sources are meant as an argument for the wide usability of graphs.

2.2 Data Integration

A property graph (Section 2.1) is a data model showing how various entities interact. Usually, these
entities come from different sources, and must in some way be combined before they can be used
(put into the graph). This is where data integration comes in: combining multiple datasets, from
various sources, into one cohesive view of the underlying data. According to various toolmakers
[18, 19, 20, 21, 22, 23], there are following paradigms when it comes to data integration.

Manual Data Integration As written in the name, manual data integration means to code your

Knowledge Graphs for Improving Robot Operations in Logistics 5

2.2 Data Integration 2 BACKGROUND

own integration pipeline, without using any specialised tooling. It is the most basic form of
data integration, and is usable for quick prototypes. It is, however, far from scalable, and
relatively error-prone. On the other hand, it allows for greater flexibility, as the user has
total control over the integration.

Middleware Integration The term middleware is used to describe software that enables com-
munication between various (legacy and new) applications. It acts as a bridge between
various technologies. When applied to data integration, then this means that there is a
piece of existing software (the middleware) that serves as a layer in-between applications
who want to use data, and the data itself. Middleware is usually limited when it comes to
usable data sources – all data sources need an implementation available in the middleware,
and these may not always be present – and might not be the best for specialised needs.

Application-based Integration This idea is to let a smart application handle all data integra-
tion tasks. The application processes data from various sources to make them compatible
with one another, and does so automatically, after a (very) complicated setup. Since this is
mostly automated, analysts can work on doing analysis as opposed to finding and combining
data together. Similar to middleware integration, the application must support the desired
data sources.

Data Warehousing A data warehouse, in plain terms, is a (collection of) large server(s) with a
lot of storage, that contains all data of the system. With data warehousing, all data is copied
from source to a single centralised place, which can then be queried and analysed. This is
sometimes also called common storage integration. The positive of data warehousing is that
all data is available in one place (less time to find where data comes from), but since data
is copied to a single place a lot of extra storage is required to facilitate this, which might be
(very) expensive.

Data Virtualization Similar to a data warehouse, with data virtualization one provides a unified
view of the data to the analysts and users. The big difference, however, is that this is a virtual
view : no data is copied, and it stays on their source systems. Clearly, this requires less raw
storage to achieve, but since data is stored on their source systems, those systems must be
powerful enough to support the desired queries.

A common term that is used in the data integration world is ETL, which stands for extract-
transform-load. Before data can be used, it must be extracted from various source systems. After
extraction of the (raw) data, it usually must be transformed or otherwise preprocessed to fit the
desired usecases, such as making a graph database. Then, it can be loaded (stored) into a database.

Both data integration and ETL have been extensively studied in academia. This paragraph
provides a brief list of some relevant articles. First, a theoretical framework for semantic interop-
erability between heterogeneous data sources is coined in [24]. In [25], a theoretical perspective
of data integration in its whole is provided. In [26] the authors provide some insight into previ-
ous work done in the data integration field, which has been rewritten into a complete book on
the principles and ideas of data integration [27]. Another overview of problems and approaches
for data integration is shown in [28]. For data integration specific to data warehousing, see [29],
and for data integration specific to middleware integration (authors investigate “Data Federation”
which means using a relational database as middleware), see [30]. For various ETL approaches,
see [31], and a complete case study following the entire ETL process in [32].

Similar to Section 2.1, above overview is meant as background information on data integration.
The datasets in this work do not have a common interface, and thus must all go through an ETL
process to be used. In stead of integration tooling, for maximum flexibility and compatibility with
existing systems we choose manual data integration to create an integration pipeline covering the
entire ETL process.

6 Knowledge Graphs for Improving Robot Operations in Logistics

2 BACKGROUND 2.3 Reliability of Machines

2.3 Reliability of Machines

The overarching theme of this thesis is finding underlying reasons why machines do not do what
we want them to do. This is what reliability engineering tries to do: making sure machines work
reliably the way we want them to. It is an “art” that requires knowledge from various fields,
such as tribology (application of the principles of friction, lubrication and wear [33], necessary to
know how the mechanical components of machines behave), mechanics (stress mechanics to find
how forces act on materials [34], fatigue mechanics to find how cracks behave in materials [35]),
the broader field of material science [36], and more [37]. There are multiple books on reliability
engineering as a whole [38], some focusing on practical aspects [39], and some focusing more on
the theory [40]. For an attempt at a summary paper of the field and its challenges, see [41].

A single machine is already a complex interaction of various components, each component poten-
tially having different materials and properties that should be accounted for when creating the
machine. An entire system of machines, such as STOREPICK, is even more complex as it not only
wants the individual machines to behave as expected, but also the entire system as a whole. Since
reliability engineering is such a large field, we choose to zoom in on three (3) ideas from it, from
“narrow” to “wide”: failure detection (Section 2.3.1), required to investigate machine degradation
(Section 2.3.2), which is required knowledge for maintenance scheduling (Section 2.3.3).

The reason we structure this section as such is to illustrate the depth of required necessary know-
ledge for only a single item pertaining to reliability of machines. These three topics are not
representative of all related literature simply due to the sheer size of all related fields. There are
more items to making a robot arm work well, ranging from proper software (controller engin-
eering) to the scheduling of (hard) computational heuristic tasks, as well as finding an optimal
allowed time-frame for those tasks to run. Even including those fields would not suffice: there
is a mismatch between the computed recipe (see Section 3.1 for an introduction to recipes, and
Section 4.5 for the related dataset) and reality.

Note that in most of the cited sources that create a model for reliability – either to detect failure,
measure degradation, or schedule (preventative) maintenance – the authors assume that there is
available data on how well machines perform. This data, generally, is assumed to be in tabular
format. It can be interesting to think of different models and potential strategies when in stead
of a tabular format, data is presented in a graph database, such as done in this work.

2.3.1 Failure Detection

One of the basic requirements to finding out whether or not a machine is reliable, is to find
when there is a machine failure. There are various approaches one can take for machine failure
detection. First, in [42] a hidden Markov model [43] is used for two scenarios of machine failure:
indistinguishable (for instance, a box of manufactured nails) and distinguishable production units
(anything with a unique identifier, such as a palletizer cell in STOREPICK). Second, in [44]
authors relate tribology to machine failure and good maintenance practise. In plain terms, they
investigate how wear and tear of materials influence reliability of machines.

Specific to robot arms, in [45] machine failure of industrial robots is investigated using various
statistical techniques, as well as machine learning techniques. The paper evaluates the advantages
and disadvantages of each of the used method, as well as a combined new method titled hybrid
gradient boosting. They propose that local joint information – information on a specific joint
of a robot arm – is the main driver for failure detection. And, finally, in [46] authors propose a
data-driven approach to anomaly detection for early detection of machine failure. They perform
this approach on a designed robot arm. Various semi-supervised techniques are evaluated and
compared in terms of their classification (fault vs non fault) performance.

Failure detection can be approached from a mechanical perspective [44], a statistical
perspective [42, 45], through machine learning [45], and anomaly detection [46].

Knowledge Graphs for Improving Robot Operations in Logistics 7

2.3 Reliability of Machines 2 BACKGROUND

2.3.2 Machine Degradation

Machine failure (Section 2.3.1 is when the machine completely stops working. Sometimes, however,
we are interested in the complete machine degradation process. This can be useful for vari-
ous reasons, for instance to find a proper timeslot for preventative maintenance (Section 2.3.3).
Machine degradation effectively says that in stead of investigating a binary state of a machine
(“working” or “failing”) one should consider a variety of steps in between.

In [47] authors make the connection between reliability of machines, human interaction with those
machines, and machine degradation. They argue that machine degradation and human interaction
is not mutually exclusive – a human operational fault gives a shock to the system, accelerating
degradation – and model this using a Semi-Markov process [48]. They show usability of their
model on the turret of a lathe. Deep convolutional neural networks [49] are used on low-cost
sensor data in [50] to estimate degradation in bandsaw machines. The setting of the paper is
that, usually, non-high-end manufacturers of bandsaws cannot justify the high cost associated
with blade wear monitoring solutions. As such, authors create first a model using data from the
monitoring solutions, and then attempt to approximate this with low-cost sensor data using a
neural network. They show that the neural network, while using data that is more cost-effective,
has higher performance in reporting on degradation.

Machine degradation is arguably synonymous to estimating remaining useful life: if there is only
50% of useful life remaining, the machine has degraded to 50%. In [51] authors state that estim-
ating remaining useful life is achieved through data acquisition, pre-processing and prognostics
modelling, and that expert knowledge needs to be available to define a failure threshold. They
say that prognostics is hard if expert knowledge is missing, since there are many potential states a
machine can be in during degradation. Two new algorithms (Summation Wavelet Extreme Learn-
ing Machine and Subtractive-Maximum Entropy Fuzzy Clustering) are proposed to automatically
identify the states of degradation, and dynamically assign a failure threshold. A tool for machine
operators that is supposed to help making decisions on the current stage of degradation is presen-
ted in [52]. They generate a Cox’s proportional hazard model [53] to estimate the survival function
of the system, and then use support vector machines and time-series techniques for forecasting the
remaining useful life. Their method is validated on a methane compressor, and the authors argue
that their tool is a reliable tool for machine prognostics.

Machine degradation can be investigated from various angles. It is related to machine
failure and human interaction [47], is synonymous to estimating remaining useful life
[51, 52], and consequently related to time series and forecasting [52]. Machine de-
gradation, like many things, can also (quite successfully) be investigated using neural
networks [50].

2.3.3 (Preventative) Maintenance Scheduling and Policies

When it is known what failure means for a machine (Section 2.3.1), and the way it degrades over
time (Section 2.3.2), one can make schedules and policies for (preventative) maintenance. A ma-
chine maintenance policy is a document explaining when and how often what kind of maintenance
is required. Preventative maintenance is maintenance done in order to prevent faults and issues.

In [54] authors illustrate what machine maintenance policies should contain: performance of pre-
ventative maintenance measures, and reasoning about whether to repair or junk the machine
having a fault. They present various “preventative and breakdown-repair” policies, containing
reasoning according to a control-theoretic model on when which action(s) should be taken. In
[55] authors assume a Weibull distribution (stemming from [56] where it was used to approximate
the tensile strength of steel during fatigue testing) for machine failure and propose a schedule for
maintenance using a genetic algorithm optimising both robustness and stability of the system. In
[57] authors assume known “hazard rates” and use those to create a condition-based maintenance

8 Knowledge Graphs for Improving Robot Operations in Logistics

2 BACKGROUND 2.4 Previous Works in Vanderlande

policy on a system-wide level, as opposed to looking at an individual machine as done in [55],
minimising maintenance cost.

2.4 Previous Works in Vanderlande

As mentioned in Section 1, we are interested in specifically the STO errors that occur during
palletization. Vanderlande’s current approach to investigating these errors is completely manual :
analysts must manually correlate an STO error to a particular LFL recipe, load the recipe into
a visualisation tool, and compare the visualisation with the pictures and videos as taken by the
STO camera (Section 3.2.1). Clearly, this is not particularly time efficient.

The first step to alleviate work from analysts is to understand the system. In [58] the complete
warehousing system, we refer to it as STOREPICK (Section 3.1), is investigated by looking through
a process mining lens. It illustrates the complexity of a system with multiple case identifiers
relating to multiple physical objects. As the work is exploratory in nature, it does only help gain
understanding of the system, but is not useful for finding STO causes.

Graph databases, and specifically Neo4J, have previously been used at Vanderlande. First, in [59]
the physical layout of a baggage handling system (conveyor belts and more systems) in an airport,
combined with process variants of how bags move through this system, is stored as a “routing
database”. The routing database can then be visualised using Bloom [60], vis.js [61], or similar
graph visualisation tools, which is then used to see concretely unwanted process variants. Second,
in [62] event knowledge graphs (from [13]) are used to model how tubs (containers carrying bags
and suitcases) in a baggage handling system in airports move, to analyse their behaviour and
performance. The tubs are part of the system, as opposed to bags that have a fixed entry and
exit.

It is clear that Vanderlande has (sucessfully) used graph databases for different purposes [59, 62],
and that they have investigated the STOREPICK system [58] before. In this work, we combine
both ingredients, and attempt to analyse the STOREPICK system by using a graph database as
data model.

Knowledge Graphs for Improving Robot Operations in Logistics 9

3 BUSINESS UNDERSTANDING

3 Business Understanding

This section contains all information required to comprehend, in detail, the business problem we
are trying to tackle. First, we further describe the context, that is, the STOREPICK system, in
Section 3.1. Then, we zoom in on the palletizer cell and its relevant sub-components in Section
3.2. Finally, we state the main business question, and provide details for the four hypotheses
(enumerated in Section 1.2) in Section 3.3.

3.1 STOREPICK Overview

As mentioned in Section 1.1, the context of the problem at hand is the STOREPICK system,
which is depicted in Figure 1 in Section 1.1. The process that this system enables – note that here
we describe a non-erroneous flow – is as follows:

1. When (new) products/items enter the STOREPICK system, they commonly arrive on pal-
lets. These pallets are then stored in pallet storage.

2. If the product has not yet been entered into the database of the system, it gets sent to
the teaching station, where various bits of information gets recorded (see Section 4.3 for the
Teaching dataset).

3. A customer places an order. This order contains a list of desired products. The required
products should be depalletized. Depalletization means taking the products from the pallet,
and putting them onto trays with known sizes. The trays are used to move items throughout
the entire system, and are stored in tray storage.

4. The LFL program attempts to find a solution for placing all required products onto the least
possible number of pallets, while simultaneously maximizing efficiency and user-friendlyness
when unpacking at location. It thus tries to heuristically solve a difficult optimisation prob-
lem (within a set duration), returning information on how all products are divided over
pallets, and how each product should be moved to be placed at the desired position on the
pallet, such that the end result is stable i.e. does not fall over during transportation. The
result that LFL gives is called a recipe (see Section 4.5 for the LFL Recipes dataset).

5. When LFL has computed a recipe, possibly with a certain unknown error margin, it must be
realised by a palletizer robot. To achieve this, trays with items are moved to a palletizer cell,
where they are to be palletized according to a recipe. The palletizer robot follows the recipe,
grabbing cases and placing them onto a pallet as it is instructed to do (see the StackInfo
dataset in Section 4.4 for which information gets recorded during palletization).

6. After completing all pallets for a particular order, they get marshalled off to the customer,
so the pallet finds its way to the customer.

Note that because LFL is heuristic, we cannot expect the solution as computed by LFL to be
100% “accurate” (we leave a potential definition of ‘accuracy’ out of the discussion as it is not
relevant). Even if LFL uses internal stability filters to classify whether a computed recipe is stable
enough, since it is unknown what a theoretically “correct” solution is, it is hard to argue how well
this works. The “correct” solution that is given to the palletizer cell may thus not be “accurate”
after all. On top of this likely existing error margin due to a heuristically computed recipe, there
are compounding errors — for instance due to delayed maintenance of the arm it may have a
deviation to the left — that can cause an item to be placed somewhere unexpected.

3.2 The palletizer cell

The part of the STOREPICK system that does palletization is its ACP module: the palletizer
cell. The complete cell is shown in Figure 3. The process that the palletizer cell goes through is
as described below.

10 Knowledge Graphs for Improving Robot Operations in Logistics

3 BUSINESS UNDERSTANDING 3.2 The palletizer cell

Figure 3: A single automatic palletizer cell, part of the STOREPICK evolution. The numbers
refer to: 1. tray unload robot 2. palletizer robot 3. order load carrier lift (chimney) / pick-to
position 4. tray infeed 5. tray outfeed 6. tray lifts 7. pick-from position 8. supply of stacks of
empty pallets (in the pallet variant only) 9. supply of slip sheets (optional) 10. operator workplace
(for exception handling) 11. manual unload position 12. tray pattern detection camera 13. stack
check camera 14. access door with locks.

1. Trays with items enter the cell through the tray infeed (number 4).

2. The trays are moved towards the tray lifts (numbers 6a, 6b).

3. The lifts elevate the trays, so the tray unload robot (number 1) can grab the items from the
tray, and push them towards the pick-from position (number 7, red area).

4. The empty trays leave the cell through the tray outfeed (number 5).

5. The palletizer robot (number 2) grabs the items on the pick-from position (number 7), and
attempts to stack them onto a pallet at the pick-to position (number 3).

6. Every time the palletizer robot grabs an item, the stack check camera (number 13) takes a
picture and evaluates whether or not this item was placed as desired.

7. When multiple items are placed onto the pallet, the lift lowers to make more space for new
items.

8. At the end, the pallet is stacked, and removed from the cell.

We are interested in steps 5 and 6. In particular, we are interested in the stack check camera
(Section 3.2.1) and the palletizer robot (Section 3.2.2).

3.2.1 Stack check camera

The stack check camera checks whether or not items are stacked on the pallet as desired, at every
placed item. To decide whether or not a stack is as desired, it uses machine vision to locate where

Knowledge Graphs for Improving Robot Operations in Logistics 11

3.2 The palletizer cell 3 BUSINESS UNDERSTANDING

cases are, and compares its findings with the computed recipe from LFL. If there is a considerable
difference between the placement as seen by the camera, and the placement from the recipe, then
it is not as desired. In this case, the stack check camera raises an STO error (we refer to the stack
check camera as the STO camera for this reason). These STO errors are the errors we are
interested in. In particular, we are interested in why these errors occur.

3.2.2 Palletizer robot

The palletizer robot arm grabs cases and places them onto a pallet. It has grippers at the end of
the arm, which are used to grap the case. Then, it moves the case according to the waypoints from
the recipe, and releases the case at the release position. An illustration of (a simplified version
of) how waypoints work is shown in Figure 4: first, the robot arm moves horizontally to waypoint
1 (red). Then, it moves downwards at angle to waypoint 2 (blue). Once there, it moves straight
down until it reaches the release position (green), where it releases the case. The release position
is always located at a fixed height under waypoint 2. The collection of all waypoints and positions
is called the flight path of the robot arm.

Figure 4: Illustration of robot arm and how it moves through waypoints.

3.2.3 Pick-to position: the pallet lift

The pallet itself rests upon a lift, as illustrated in Figure 5. During palletization the lift lowers the
pallet so the cases can be stacked according to the recipe. At first, the pallet is supported by four
“blocks” as shown on top of the illustration, but at a certain point there is a handover between the
block-like support (blue) to a fork-like support (green), as indicated by the arrow. This handover
between support structures is a potential cause for instability in the stack: the pallet itself and
the cases stacked on it may shift in a direction, causing problems later in the stacking procedure.

12 Knowledge Graphs for Improving Robot Operations in Logistics

3 BUSINESS UNDERSTANDING 3.2 The palletizer cell

Figure 5: Illustration of the pick-to position: the pallet lift.

3.2.4 Palletizer Robot: Correction 1

The palletizer does not blindly follow the provided recipe. In order to combat potential mechanical
issues, such as the handover between the support structure of the pallet as explained in Section
3.2.3, with help of the STO camera (Section 3.2.1) the palletizer may decide to shift waypoint 2
upwards if it decides that it is too low. This scenario is depicted in Figure 6: on the left, waypoint
2 and consequently the release position are too low for the case to be placed, lest it be crushed
between the robot arm and pallet. To avoid this, the camera informs the system of a corrected
waypoint 2 such that the case can be placed without issue.

Figure 6: Illustration of the first type of local correction that the palletizer robot performs.

3.2.5 Palletizer Robot: Correction 2

Sometimes a case gets stuck on the edge of the lift shaft, blocking a next case from its normal
route to be placed on the pallet. Similar to Correction 1 as shown in Section 3.2.4, with the help
of the STO camera (Section 3.2.1) the palletizer may decide to shift waypoint 1 upwards if it sees
that its flightpath is currently set in such a way that cases would hit each other. This scenario is
depicted in Figure 7: on the left, there is a case stuck on the lift shaft which would prevent the
orange case to be palletized according to its computed flight path, noted by the red cross. On
the right of the illustration, one can see a corrected waypoint 1, resulting in a possible flightpath
where the orange case can be moved and consequently palletized without issue, as indicated by
the green checkmark.

Knowledge Graphs for Improving Robot Operations in Logistics 13

3.3 The Business Problem 3 BUSINESS UNDERSTANDING

Figure 7: Illustration of the second type of local correction that the palletizer robot performs.

3.3 The Business Problem

In Sections 3.1 and 3.2 we explain the context of the problem. From this context, it is evident that
palletization is a hard task to do well. Recall that a recipe is heuristically computed, and thus
this recipe which is followed during palletization may have potential issues. There are possible
mechanical problems, such as the lift handover as mentioned in Section 3.2.3, adding to the
potential issues. Even more, we check “correctness” using machine vision, which might not be
completely accurate. Another way to formulate this: there are compounding errors, which
we believe is the underlying cause for STO issues. While the system already tries to correct for
certain situations (Sections 3.2.4, 3.2.5), it is far from a solved problem.

In Section 1.2 we briefly mention the 4 hypotheses we have. These are further explained in
Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 for HP 1, HP 2, HP 3, and HP 4, respectively. Restating
the business level problem that we try to answer: “To what extent can we use a graph database to
find underlying reasons for STO errors?”

3.3.1 HP1: Incorrect placements cause more STOs.

We suspect that “incorrect placements” cause more STOs. In this phrase, incorrect placements
are to be read as a discrepancy between the placements as computed in the LFL recipe and the
placements as recorded by the STO camera. The reasoning as to why we decide to look into this
possible underlying cause is due to the fact that it is the “logical” first thing to ask, given the
context of the project: given some recipe that tells us how to stack, not doing so might be bad.

Figure 8: Illustration of incorrect placements: The left case (A) was placed in a different place
than expected, causing the right case (B) to either crush (A) when placing, or being placed in a
way that it falls down.

A possible result of incorrect placements is shown in Figure 8. On the left, one sees two cases (A)
and (B) that are to be placed onto the load carrier according to the green boxes. If case (A) is,

14 Knowledge Graphs for Improving Robot Operations in Logistics

3 BUSINESS UNDERSTANDING 3.3 The Business Problem

however, placed incorrectly a bit to the right, this means that case (B) can no longer be placed
in its original space. If the robot were to attempt to place (B) on its original spot, either it will
accidentally crush case (A) by pushing down onto the edge, or it will be placed onto this edge
with no support anywhere else, and consequently fall down.

3.3.2 HP2: Building towers in the stack causes more STOs.

We suspect that “building towers” in a stack may be cause for STO errors. Here, building towers
is to be interpreted as a stacking of various cases on top of one another, where the cases have
different weights and sizes. The higher such a tower, intuitively, the less stable it may become and
it may cause cases to fall over, which is undesirable.

Figure 9: Illustration of a tower in the stack: The red case is built into a tower, without surrounding
cases, causing it to possibly fall over to the left or right.

Figure 9 illustrates towers in a stack. On the left of the illustration, the red ‘offender’ case is
placed onto two cases forming a tower. This possibly causes instability, allowing the case to,
during palletization, tip over to the right or left, the latter shown on the right-hand side of the
image.

3.3.3 HP3: Height gaps cause more STOs.

We suspect that height gaps cause more STOs. A height gap is created when some cases of various
sizes fail to perfectly align with one another. These gaps may cause instability, causing cases to
either move from their original position slightly, or in a worst case scenario fall down into the gap.

Figure 10: Illustration of height gaps in a stack: The red cases are placed in such a way that
potentially they might shift due to height gaps in the stack. The purple-blue star indicates a
possibility for cases (A) and (B) to fall into the gap completely.

An example of height gaps is shown in Figure 10. On the left is a hypothetical stacking of cases,
where ‘offender’ cases are shown in red. These red cases are placed in such a way that there are
(height) gaps in the stacking. On the right we show a potential cause: the cases move from their
original position, ruining any future cases from reaching their desired position. Even more, as
indicated by the purple-blue star, it could happen that due to the weight of case (B) both cases
(A) and (B) fall down into the gap.

3.3.4 HP4: Overhang causes more STOs.

We suspect that “overhang” of cases cause more STOs. Since overhang may be interpreted to
be between two cases, we clarify that here overhang is defined as overhang of a particular case

Knowledge Graphs for Improving Robot Operations in Logistics 15

3.3 The Business Problem 3 BUSINESS UNDERSTANDING

with respect to the load carrier. If for this particular case its edges are protruding further than
the boundaries of the load carrier, whether or not this was as computed beforehand, we say that
there is overhang.

Figure 11: Illustration of overhang: Due to the red case being placed with considerable overhang,
there is a chance that (during palletization) it and the cases on top of it shift off the pallet.

In Figure 11 we show a illustration of overhang. The right side of the red cases hangs over the load
carrier: it has overhang. The illustration shows a possible cause of overhang, namely, that cases
might shift due to the weight. Other possible consequences of overhang include that overhanging
cases may break during transportation (the marshalling step from Figure 1) or that overhanging
cases may cause the stack to get stuck when moving through tight areas.

16 Knowledge Graphs for Improving Robot Operations in Logistics

4 DATASET DESCRIPTIONS

4 Dataset Descriptions

This section explains the various datasets used during the thesis in Sections 4.1 through 4.5. Each
of these subsections contains information on the particular fields or columns the dataset contains,
noted using cursive text. Valuations are noted using the typewriter font. Besides information
on what the dataset contains, we explain the extraction and transformation steps (if applicable
- see Section 2.2 on ETL). For each dataset description we list data quality issues, and potential
annoyances when it comes to the extraction/transformation of the data.

Each dataset is retrieved for a 7 day long time-frame in December 2021,
for 20 palletizer cells.

In each section describing a dataset, we will briefly link to a carefully constructed toy example
that will be used throughout the remainder of the thesis to explain Data Integration (Section 5)
and the data model (Section 6). The toy example is for a hypothetical STOREPICK system using
two palletizer cells (Section 3.2), where there are two orders. Order 1 desires only a single pallet,
and order 2 desires two pallets. Figure 12 shows these pallets. Note that while the toy example
has been carefully constructed, there may be some inconsistencies between explained text and the
specific values - in such case the explained text is always leading.

4.1 SCADA

This dataset comes from the SCADA system — SCADA is a control system architecture consisting
of amongst others graphical user interfaces for high-level supervision of machines and processes
— in place at a specific STOREPICK installation. The SCADA system reports on many kinds of
errors for all parts of STOREPICK, so not just for palletization. Figure 13 shows the important
columns that the SCADA dataset contains on the left: each line in the dataset corresponds to
some error, identified by its error type. It has a starting time (start time), textual error description
(error id), a reference to a part of the system where the error occurred (error part), and potentially
a duration and ending time (end time).

There are also fields indicating how severe an error is, and whether or not the error is technical or
operational in nature, but since we are only interested in a single error type, we can safely ignore
them, as they are identical per error type. The single error type we are interested in is STO. This
dataset is the “starting point”: it lists all STO errors (see Section 3.2.1) that occur.

Extract

In Table 8 (located in Appendix A.1) we show what (an anonymised version of) the SCADA
dataset looks like after extraction. Some column names have been renamed, as indicated by the
cursive font. Various values have been replaced with a representative placeholder. Numerical
values have been rounded so the table can be displayed on a single page. For displaying reasons,
the technical, operational, and severity columns are omitted. Notice how there are many entries
(in this example all of them) that do not correspond to the particular error type we are interested
in (STO).

Before any filtering, there are a total of 112, 728 entries. The CSV file itself is approx-
imately 16 MB in size. Out of all entries, only 2, 425 are related to the STO error we are
interested in. This means that we investigate 2.15% of all errors in the STOREPICK
system.

Transform

A transformed version of Table 8 (located in Appendix A.1) corresponding with the illustration
in Figure 13 is shown in Table 1. We omit the technical, operational, severity, and error id
columns, as these are constant for the transformed dataset. For further displaying and referencing

Knowledge Graphs for Improving Robot Operations in Logistics 17

4.1 SCADA 4 DATASET DESCRIPTIONS

Figure 12: Pallets in the toy example.

18 Knowledge Graphs for Improving Robot Operations in Logistics

4 DATASET DESCRIPTIONS 4.2 Telegrams

convenience, we add a row indicator (not present in the dataset). Note that Table 1 is the toy
example, and does not contain real data. Also note that timestamps after transformation are
stored in unix time, but this would hinder understanding when displayed on paper, and as such
timestamps are displayed according to their actual value.

row start time duration end time error id error part

1 2021-12-10
11:58:12.890+1100

blocked lift shaft 1014.56.78

2 2021-12-10
11:56:52.816+1100

00:02:18.633 2021-12-10
11:59:11.449+1100

blocked place position 1014.56.78

3 2021-12-10
11:56:52.816+1100

00:01:45.567 2021-12-10
11:58:38.383+1100

missing stack surface 1024.56.78

Table 1: Toy example of the SCADA dataset after transformation.

Data Extraction Annoyances / Quality Issues

Exporting the SCADA dataset from the system to a CSV file is done by selecting a desired time-
frame, and clicking an export button. An example of the “raw” data as exported is shown in
Table 8 in Appendix A.1. In this raw data, the first three rows show that the end time of some
error is not contained in the selected time-frame, resulting in the related field to contain a textual
message (“No end time within search window”), and the duration field to simply contain nothing.
A workaround is to export a larger dataset, for a longer period of time, and then programmatically
checking if the selected period of time is long enough to include all desired end times. This step
might need to be executed multiple times to find a correct period of time. Also, naturally, unwanted
entries due to the longer time selection should be removed.

Another annoyance, is the fact that there is no timezone information in the data. When trying
to combine this dataset with others, each potential timezone must be manually checked to find
the required offset for a timestamp with a known timezone: it is quite a task to figure out which
timezone the timestamps of each dataset is recorded in. As workaround, in an undisclosed online
environment used by Vanderlande, one can change the timezone of the account to a known value
(such as UTC), and re-export the dataset. Then, based on the differences in start time, the original
timezone can be rediscovered. In this specific case, this timezone is UTC+11, as indicated by the
+1100 in the timestamps in Table 1.

In terms of nice properties such as uniqueness and keys, we find that in the transformed toy
dataset (Table 1) on row 1 there is no information for duration and end time. This is due to the
aforementioned reason that it is not contained in the search window. Another point to notice,
perhaps most interesting, is that errors in rows 2 and 3 have identical starting times, but different
reasons (error id) for the error. Multiple error ids may be set at the same time, and timestamps
are not unique, nor is a combination of a timestamp and the part that caused the error (error part).

4.2 Telegrams

The Telegram dataset comes from logging produced by programmable logic circuits (PLCs) within
the STOREPICK system produce. A PLC, in this instance, is a tiny computer with sensors, that
logs data every time a sensor sees something. These logging messages are called Telegrams within
Vanderlande, hence the name of the dataset. There are many different types of Telegrams, but
the dataset that is used in this thesis has been filtered down specifically to only STO related
Telegrams during extraction. Figure 13 shows the important columns that the Telegram dataset
contains on the right: time represents the timestamp of a single Telegram message, error part is a
reference to the related part of the system where the Telegram was generated, pallet id represents
the pallet which was being stacked at the time this Telegram was generated, and finally there are
four Boolean variables indicating if there is a type of error related to the Telegram.

Knowledge Graphs for Improving Robot Operations in Logistics 19

4.2 Telegrams 4 DATASET DESCRIPTIONS

Figure 13: The SCADA (left, blue) and Telegram (right, green) datasets.

The possible error types are blocked place position (the original position where the current case
is to be placed is blocked), blocked flight path (the flight path that the robot arm is instructed
to follow to place the current case is blocked), blocked lift shaft (there are issues in the lift shaft
causing the current case to be unable to be stacked) and missing stack surface (the case itself is
missing, and thus cannot be stacked).

Extract

Extracting the dataset from the system with a query that filters solely on Telegram messages
related to STOs gives us, besides a timestamp with timezone information and a correctly extracted
error part field, an unparsed singular field data. An example is shown below (manually added
space after Blocked Place Position=FALSE for readability).

______Blocked_Flight_Path=FALSE________Blocked_Place_Position=FALSE____________

Blocked_Lift_Shaft=FALSE_________Missing_Stack_Surface=FALSE___________Pallet_TSU_ID= 1↪→

Transform

Clearly, an unparsed singular data field is not particularly useful. We transform it so we get the four
Booleans (blocked place position, blocked flight path, blocked lift shaft, and missing stack surface)
and the pallet id. This is done by splitting on the equals sign (=), selecting an element after
splitting ([0] for the first element, [1] for the second element, . . .), and then splitting again on
an underscore () to extract the TRUE or FALSE value. By testing if said extracted value is exactly
equal to TRUE, we set the Boolean variables to True when it is TRUE, and to False when it is FALSE.
For the pallet id field we only cast the result after splitting on equality to an integer. Python code
implementing this idea is shown below, where df["data"] selects the data field from a pandas
DataFrame1.

1 df["blocked_flight_path"] = df["data"].apply(

2 lambda data: data.split("=")[1].split("_")[0] == "TRUE"

3)

4 df["blocked_place_position"] = df["data"].apply(

5 lambda data: data.split("=")[2].split("_")[0] == "TRUE"

1https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

20 Knowledge Graphs for Improving Robot Operations in Logistics

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

4 DATASET DESCRIPTIONS 4.3 Teaching

6)

7 df["blocked_lift_shaft"] = df["data"].apply(

8 lambda data: data.split("=")[3].split("_")[0] == "TRUE"

9)

10 df["missing_stack_surface"] = df["data"].apply(

11 lambda data: data.split("=")[4].split("_")[0] == "TRUE"

12)

13 df["pallet_id"] = df["data"].apply(lambda data: int(data.split("=")[5]))

Data Extraction Annoyances / Quality Issues

As illustrated above, the Telegram messages are incorrectly parsed by the system itself. This
means that if we export to CSV in a similar fashion to the SCADA dataset, the resulting CSV
only contains a single data column, which requires parsing. Writing such parsing code is not
particularly difficult due to the consistency of the data field, but it does add more potential points
of failure.

There are a total of 7 CSV files, with on average 221, 865 messages per day. The
complete dataset counts 1, 553, 053 Telegram messages.

Besides having to manually parse the field, it is important to realise that within the data column,
the pallet id field is stored with leading spaces, which should be taken into account. It should
also be noted that exports are limited on a time-frame per day, since larger time-frames give a
timeout.

time error part blocked
place
position

blocked
flight
path

blocked
lift
shaft

missing
stack
surface

pallet id

2021-12-10
00:58:12.890+0000

1014.56.82 FALSE FALSE TRUE FALSE pallet3

2021-12-10
00:56:52.816+0000

1014.56.82 FALSE FALSE TRUE FALSE pallet1

2021-12-10
00:56:52.816+0000

1024.56.82 TRUE FALSE FALSE FALSE pallet2

Table 2: Subset of 3 out of 21 lines of the toy example (Table 9) of the Telegram dataset after
transformation.

Table 2 shows a subset of the Telegram data for the toy example (complete toy example in Table
9 in Appendix A.1). Lines where at least one Boolean variable is set to TRUE have been coloured
green. Notice how in many of the rows in the full toy example (Table 9, Appendix A.1), none of
the Boolean variables are set to TRUE: this is because a single Telegram message is generated at
least once for every case that is placed. We say at least once, since there may be retries when the
system decides the first message was not sent properly. These retries are a particularly annoying
issue when integrating data, see Section 5.2.

4.3 Teaching

The teaching dataset corresponds to all data that is learned at the teaching station (see Figure
1). This dataset contains many fields, all related to physical properties of the case and particular
metadata, such as a barcode number and a timestamp on when this item was first received in the
system. Properties like width, height, length, and weight are some of the fields in this dataset.
Each row of the teaching dataset corresponds to a single case, uniquely identified by case id. For
consistency, on the left of Figure 14 we shows (some of) these fields, similar to the other sections
describing datasets.

Knowledge Graphs for Improving Robot Operations in Logistics 21

4.4 StackInfo 4 DATASET DESCRIPTIONS

Extract, Transform, Data Extraction Annoyances / Quality Issues

The Teaching dataset is extracted by Vanderlande operators on site. It is not available in any
online environment as opposed to the SCADA and Telegram datasets. This makes getting a new
dataset very slow, as it rests upon the operators to extract it for us. In an ideal situation, all
teaching data should be provided in the same environment as other datasets.

case id weight (kg) width (mm) height (mm) length (mm)

1 16 279 110 1000
2 3 128 110 1000
3 40 660 65 1000
4 24 250 66 1000
5 18 343 121 1000

Table 3: Toy example of the Telegram dataset after transformation.

Besides having no control over exporting, the dataset itself is simply big and largely undocumented.
Considerable time has been spent understanding this dataset, and what all fields actually mean.
A (very small) subset of the fields from the Teaching dataset corresponding to those in Figure 14
is shown in Table 3, the toy example, where each entry has been colour coded according to the
colours used in Figure 12.

Figure 14: The Teaching (left, light blue) and StackInfo (right, yellow) datasets.

4.4 StackInfo

In this dataset one can find, per palletizer, per date, and per pallet (pallet id), the order of
cases that were stacked on a pallet as executed by the palletizer (indicated by palletise seq nr).
Besides this order, for each placed case, it lists the expected placements (those as computed
by LFL, indicated by expected{XYZ}{1234}), as well as the actual placements (indicated by
placed{XYZ}{1234}). When we write expected{XYZ}{1234}, this should be expanded to all com-
binations: expectedX1, expectedX2, expectedX3, expectedX4, expectedY1, . . . , expectedZ4. This
expansion should be done for any variable where we use {} in its name. These placements (expec-
ted{XYZ}{1234} and placed{XYZ}{1234}) effectively are four three-dimensional points. It also

22 Knowledge Graphs for Improving Robot Operations in Logistics

4 DATASET DESCRIPTIONS 4.4 StackInfo

has information on how the robot arm is supposed to move (indicated by waypoint2{XYZ}; see
Section 3.2.2), and where it should release the case (indicated by release position{XYZ}; see Sec-
tion 3.2.2). Finally, there is available data on the difference between the expected and placed
centre points of the case (off center{XY}).

palletise
seq nr

case
id

stack
floor
height

offCenterX offCenterY pallet id palletizer

0 0 −534 −555 pallet1 ACP1
1 5 0 10 9 pallet1 ACP1
3 3 0 −3 10 pallet1 ACP1
4 4 0 −4 −2 pallet1 ACP1
5 2 0 −8 6 pallet1 ACP1
6 1 0 10 10 pallet1 ACP1
0 0 770 776 pallet2 ACP2
1 3 0 −1 1 pallet2 ACP2
2 1 0 −3 4 pallet2 ACP2
3 1 0 −10 −1 pallet2 ACP2
3 5 0 1 −8 pallet2 ACP2
0 0 −460 826 pallet3 ACP1
1 4 0 −6 −9 pallet3 ACP1
2 4 0 7 10 pallet3 ACP1
2 4 0 3 −7 pallet3 ACP1
4 4 0 1 10 pallet3 ACP1
5 4 66 8 2 pallet3 ACP1
7 4 66 1 −5 pallet3 ACP1
8 4 66 3 2 pallet3 ACP1
9 4 66 2 −1 pallet3 ACP1

Table 4: Toy example of the StackInfo dataset after transformation, omitting various fields.

Extract

Similar to the Teaching dataset, the StackInfo dataset is not available for export. In fact, by default
this data is not even recorded. It must be turned on (for instance during planned maintenance)
on a per-pallet-cell basis. This means that for each pallet-cell an operator has to dive into the
software running the cell, and enable a logging flag. Once turned on, the logs must manually be
extracted (again, on a per-pallet-cell basis). In an ideal situation, the logs is available through the
same environment as the SCADA and Telegram datasets are.

Transform

The extracted StackInfo dataset is deeply nested, and some information is only available in the
path and filenames. An example is shown below.

DATA_ROOT/Stackinfo/ACP{XX}/{DDMMYYYY}/StackInfo/{YYYYMMDD}_{HHMMSS}___palletID.csv

To elaborate:

• For each palletizer cell, there is a separate folder (ACP07, ACP08, . . .).

• In those folders, all stacks are separated into other folders, organised by date DDMMYYYY

(02122021, 03122021, . . .).

Knowledge Graphs for Improving Robot Operations in Logistics 23

4.4 StackInfo 4 DATASET DESCRIPTIONS

• The date folder contains a single subfolder named StackInfo, which contains all CSV files.

• A single CSV file contains a timestamp and a pallet ID in its filename.

Transforming to a usable data format is relatively straightforward (loop through folders, read
CSV into a DataFrame, concatenate DataFrames), and is deemed not interesting to show. What
we will show is the final result after transformation for the toy example in Table 4. We omit all
points (expected{XYZ}{1234}, placed{XYZ}{1234}, waypoint 2{XYZ}, release position{XYZ}) so
we can fit the table in a page. Later, in Section 7, we will introduce some of these values when
necessary. Note how entries are colour coded, similar to the toy example for the Teaching dataset
(Table 3), to correspond with the colours in Figure 12.

Data Extraction Annoyances / Quality Issues

Important to note is that expectedX1 does NOT correspond with placedX1. Instead, it follows
following scheme:

• The expectedX1 maps to the placedX2 field: expectedX1 → placedX2.

• The expectedX2 maps to the placedX3 field: expectedX2 → placedX3.

• The expectedX3 maps to the placedX4 field: expectedX3 → placedX4.

• The expectedX4 maps to the placedX1 field: expectedX4 → placedX1.

This issue is identical for expectedY□ and expectedZ□ fields. Another point to note is that the
off center fields (computed as some difference between placed and expected locations) are also
provided for load carriers (pallets). In such case, however, it remains unclear what this means
precisely. Finally, note that the given case id has a fixed length: there are leading spaces (not
shown in toy example in Table 4 as all case ids are of the same length), which should be taken
into account when loading the dataset.

Another important note to make is that the palletise seq nr field is not a simple increasing count
(which is what would be expected, as it denotes the sequence used to palletize cases). Sometimes
numbers are skipped (in the toy example this happens for pallet1: the palletise seq nr skips from
1 to 3, (wrongly) indicating that the second case was missed), sometimes duplicated (in the toy
example this happens for pallet2: the palletise seq nr field contains two rows where it is equal
to 3, (wrongly) indicating that this case was placed twice), and sometimes both at the same time
in the same pallet (in the toy example this happens for pallet3: number 2 was seemingly placed
twice, and number 3 is seemingly missing). It would be interesting to investigate the underlying
causes of this phenomenon in another project.

24 Knowledge Graphs for Improving Robot Operations in Logistics

4 DATASET DESCRIPTIONS 4.4 StackInfo

0

5

10

15

20

25

30

Co
un

t

palletiser = ACP20 palletiser = ACP26 palletiser = ACP30 palletiser = ACP23 palletiser = ACP08

0

5

10

15

20

25

30

Co
un

t

palletiser = ACP25 palletiser = ACP13 palletiser = ACP11 palletiser = ACP17 palletiser = ACP27

0

5

10

15

20

25

30

Co
un

t

palletiser = ACP14 palletiser = ACP06 palletiser = ACP29 palletiser = ACP10 palletiser = ACP19

0

5

10

15

20

25

30

Co
un

t

palletiser = ACP21 palletiser = ACP07 palletiser = ACP24 palletiser = ACP22 palletiser = ACP12

0 50 100 150 200 250
num_cases

0

5

10

15

20

25

30

Co
un

t

palletiser = ACP09

0 50 100 150 200 250
num_cases

palletiser = ACP16

0 50 100 150 200 250
num_cases

palletiser = ACP18

0 50 100 150 200 250
num_cases

palletiser = ACP15

0 50 100 150 200 250
num_cases

palletiser = ACP28

NUMBER OF CASES PER PALLET

Figure 15: Number of cases per pallet, per palletizer cell.

In the dataset (271 MB in size) a total of 12, 562 pallets are stacked. On average per
day this equates to 1, 795. Per palletizer, the average number of pallets is 94. Figure
15 shows the number of cases per pallet per palletizer. Based on this plot, it seems
that most pallets have around 100 cases. Interestingly, palletizer cells ACP07 and ACP15

have stacked considerably less cases per pallets than other cells.

Knowledge Graphs for Improving Robot Operations in Logistics 25

4.5 LFL Recipes 4 DATASET DESCRIPTIONS

4.5 LFL Recipes

The LFL Recipes dataset contains all information that LFL used to compute how pallets are to
be stacked. There is a lot of information available, so to keep things understandable, in Figure 16,
we show only the transformed dataset. The order id refers to the ID of the entire order, consisting
of multiple suborders, each with their own suborder id. A suborder relates directly with a single
pallet. For each pallet, we have the height (stack height), weight (stack weight), used volume
(stack volume), the number of cases (nr cases in stack), a fillrate indicating how well this pallet is
filled, and coherence measures (article coherence, group coherence) that LFL uses when computing
the recipe. For each case that is in the suborder, we have its id (case id), the sequence id indicating
in which order cases are to be stacked, the stacking method indicating what method is used to
stack the cases (the stacking method field describes if LFL used a particular heuristic to compute
how to stack the case e.g. a Tower or Layer heuristic), and the completed height.

Figure 16: The LFL Recipes dataset.

Extract & Transform

The LFL dataset itself is extracted from the system by Vanderlande engineers. This information
is not available in the online environment. The LFL recipes are delivered as a ZIP folder. In this
ZIP, there are four (4) folders, each containing a single XML file. There is a lot of information in
these files, ranging from a list of all required products for this order, metadata for said products,
an ordering of movements of the robot arm to stack these products, and the entire computation
process to get to its end result.

26 Knowledge Graphs for Improving Robot Operations in Logistics

4 DATASET DESCRIPTIONS 4.5 LFL Recipes

order
id

suborder
id

stack
height

stack
weight

nr cases
in stack

sequence
id

case
id

stacking
method

order1 suborder1 175 101 5 1 5 Idea1;MethodA
order1 suborder1 175 101 5 1 3 Idea1;MethodA
order1 suborder1 175 101 5 2 1 Idea1;MethodB
order1 suborder1 175 101 5 2 2 Idea1;MethodB
order1 suborder1 175 101 5 2 4 Idea1;MethodB
order2 suborder2 175 90 4 1 5 Idea2;MethodA;

Rotated
order2 suborder2 175 90 4 1 3 Idea2;MethodB
order2 suborder2 175 90 4 2 1 Idea1;MethodA;

Rotated
order2 suborder2 175 90 4 2 1 Idea1;MethodB;

Rotated
order2 suborder3 132 192 8 1 4 MethodC
order2 suborder3 132 192 8 1 4 MethodC
order2 suborder3 132 192 8 1 4 MethodC
order2 suborder3 132 192 8 1 4 MethodC
order2 suborder3 132 192 8 2 4 MethodC
order2 suborder3 132 192 8 2 4 MethodC
order2 suborder3 132 192 8 2 4 MethodC
order2 suborder3 132 192 8 2 4 MethodC

Table 5: LFL Recipes dataset for the toy example.

We use a C# script (as opposed to python) to transform the delivered ZIP files into CSV fields
with the fields as listed in Figure 16. The reason why C# is used, is because it can directly use
available tooling made by Vanderlande engineers. This way, there is no longer a need to manually
parse XML files, as this is done by the tooling. We simply have to select the desired pieces of
information according to the way it is stored, and then export to CSV. This is done in batches of
50 recipes, since more than that takes too long.

There are a total of 2, 745 ZIP files taking up a total of 8.7 GB. After processing with
the C# script this is reduced to 55 CSV files totalling 335 MB.

Data Extraction Annoyances / Quality Issues

As mentioned, the dataset is delivered as XML in a ZIP. This is quite annoying to manually parse,
but we do not need to thanks to existing tooling available in C#. Table 5 shows a subset of the
fields from Figure 16 for the toy example. Fields have been left out so the Table can be displayed
on a single page. For confidentiality reasons, the stacking method field contains placeholder names.
One can see that there are a total of 2 orders for the dataset (order1 and order2 are the only
values in the order id column), with a total of 3 suborders. This corresponds to the three pallets
shown in Figure 12. It should be noted that the stacking method field contains a list of relevant
information separated by a semicolon (;): there are various global ideas that LFL employs on how
a case is meant to be placed, and within those ideas there are various methods to achieve them.
Sometimes, no idea is given, and sometimes we have an indication that the case to be placed is
rotated when placing it: cases have a default rotation when LFL computes the recipe, and this
rotation means that for this particular recipe the case is no longer in this default rotation. Finally,
the Table shows that some attributes are on the pallet-level, and some on case-level, precisely as
mentioned in the introductory paragraph of this dataset.

Knowledge Graphs for Improving Robot Operations in Logistics 27

5 DATA INTEGRATION

5 Data Integration

This section shows how all datasets from Section 4 are integrated. The integration pipeline is
manual, as we are focused first and foremost on the question if we can even integrate the data
at all. As it turns out, there are two missing links. Figure 17 shows how all datasets are linked
together. There, on the right side, there are two linking datasets not described in Section 4; these
are the two missing links that were necessary for combining all datasets into one. The Figure also
indicates which combination can be found in which section: the SCADA dataset (from Section
4.1) with the Telegram dataset (from Section 4.2) is linked in Section 5.1. The result of this
combination is linked with the StackInfo dataset (from Section 4.4) in Section 5.2. The third join
to compute is adding the LFL recipes (from Section 4.5), which requires the two linking datasets.
This is explained in Section 5.3. The final link to be made is with the Teaching dataset (from
Section 4.3), which is shown in Section 5.4. For each link to be made, we discuss data quality
issues (if applicable).

Figure 17: Data integration overview illustration.

5.1 Join 1: SCADA + Telegram

The SCADA dataset is the starting point of the integration pipeline, as this dataset contains
information on the STO errors. Recall that it has start time (s) and end time (e) fields: for
a single STO error, it gives an interval [s, e]. The Telegrams give a timestamp time (t). Both
datasets also have a particular error part (ps for SCADA, pt for Telegram). An entry from the
SCADA dataset is related to an entry from the Telegram dataset if (ps = pt) ∧ (t ∈ [s, e]). The
first part (ps = pt) is straightforward, but the second part (t ∈ [s, e]) causes issues: each row in
the SCADA dataset may correspond with n Telegram messages.

The only way to find out which ones are supposed to be linked together, is by looking at the
timestamps. Assuming identical timezones and no time-drift, and to write somewhat
efficient linking code, this means that one would have to loop through time, and match to SCADA
and Telegrams respectively, after which a mapping is created between a SCADA entry → Telegram
message. The lowest granularity of the time field in the Telegram dataset (as recorded - potentially
this is incorrect) is lower than a nanosecond. Looping over each nanosecond in a 7 day time-frame
is highly inefficient (for reference, there are 6.048 · 1014 nanoseconds in 7 days), and thus we do

28 Knowledge Graphs for Improving Robot Operations in Logistics

5 DATA INTEGRATION 5.2 Join 2: + StackInfo

not want to do this. One possibility is to round the time to the nearest millisecond, but this
introduces issues such as two Telegrams having the same time. If the assumption that there is no
time-drift does not hold, then rounding becomes even more involved to do accurately.

We would like to avoid implementing such time-based join. One way to get around this, is by mak-
ing and then verifying following assumption: Telegram messages have enough information
to fully describe when STOs occur. We check this assumption using the script in Codeblock
5 in Appendix A.3. Note that this does not implement the loop as described above, since it is
precisely what we wisht to avoid. Instead, the script loops through (an arbitrarily chosen subset
of) the loaded SCADA dataset, finds the reasons why STOs happen (encoded in the 4 Boolean
variables), finds their start and end times with a bound of 10 seconds both ways (this bound was
chosen to accommodate potential absolute differences between clocks of different systems), finds
the noted palletizer, and then finally checks in the Telegram dataset if a corresponding datapoint
can be found. The reason why it only uses a subset of the SCADA dataset is due to time con-
straints – it takes too long to check the entire dataset. Based on a subset of the dataset, it seems
that we can safely make this assumption: Telegram messages have enough information to fully
describe when STOs occur.

Figure 18: Illustration showing that in the toy example SCADA and Telegram datasets nicely
align.

The toy example we made also nicely correspond to the assumption that Telegram messages have
enough information to fully describe when STOs occur. This is illustrated in Figure 18. Notice
besides the fact that the assumption holds, that the timestamps are not in the same timezone.
As mentioned in Section 4.1, the SCADA dataset did not initially contain timezone information,
which made finding this link harder than it should have been due to the (incorrect) apparent time
difference.

5.2 Join 2: + StackInfo

After combining the SCADA and Telegram datasets, we want to bring in the StackInfo dataset.
Ideally, this link would be a trivial join operation. Sadly, it is not: there are mismatches between
the number of messages (rows) in the Telegram dataset (per pallet), and the number of items

Knowledge Graphs for Improving Robot Operations in Logistics 29

5.2 Join 2: + StackInfo 5 DATA INTEGRATION

placed (rows) in the StackInfo dataset (which is per pallet). This mismatch happens 2, 272 times
in the used dataset. Ignoring them seems bad, since most likely these are the pallets we are
interested in. The toy example deliberately contains an instance of this mismatch, as illustrated
in Figure 19: there are a total of eight (8) cases to be placed for pallet3, but there are ten (10)
telegrams. Since each case is identical, there is no way to find which telegram messages correspond
with which case(s).

Figure 19: Data from the toy example illustrating mismatch between Telegrams and StackInfo.

Similar to the idea behind matching a SCADA entry to multiple Telegram entries, a first potential
workaround is to group Telegrams into buckets that correspond to the case. The only field that
would allow us to do this, is the time timestamp. As such, this workaround is infeasible, since
there may be two Telegram messages for the same case with a relatively long time in between (e.g.
an erroneous case where an operator had to intervene), or with a very short time in between (e.g.
brief connection loss resulting in a retry).

30 Knowledge Graphs for Improving Robot Operations in Logistics

5 DATA INTEGRATION 5.2 Join 2: + StackInfo

A consequence of the inability to accurately match Telegram data to StackInfo data on a case-
by-case basis is loss of data: we must consider only a pallet-level match. This has following
consequences for the Telegram dataset:

1. The error part field should be unique if grouped per pallet.

2. The palletizer field should be unique if grouped per pallet.

3. A count field – this field is added and counts the number of messages per pallet – should be
set to its maximum value, as this indicates the number of messages for this pallet (using an
average or other statistic is unreasonable, as the meaning becomes useless).

4. The Boolean indicator variables should be set to TRUE if any of the messages for this pallet
are TRUE.

5. We add another indicator variable maybe STO, which is the disjunction of the 4 Boolean
indicator variables (so this is TRUE if for this particular row any other Boolean indicator
variable was TRUE).

Note: In the remainder of the data integration pipeline, we assume that themaybe STO
field indicates that an STO occured.

The above explanation to group Telegrams per pallet is realised in Codeblock 1, part of a Jupyter
Notebook that implements the complete data loading and integration pipeline in python.

1 # Group by pallet

2 groupedObject = telegram_df.groupby("pallet_id")

3

4 # Test: if we group by pallet, the error_part identifier is always unique

5 assert groupedObject["error_part"].nunique().nunique() == 1

6

7 # Test: if we group by pallet, the palletizer is always unique

8 assert groupedObject["palletizer"].nunique().nunique() == 1

9

10 # Count is set to max

11 group_count = groupedObject["count"].max()

12

13 # Time is transformed to start and end

14 group_time_start = groupedObject["time"].min()

15 group_time_end = groupedObject["time"].max()

16

17 # Indicator variables are set to True if any of the values are True

18 telegram_grouped_df = groupedObject[["blocked_flight_path", "blocked_place_position",

"blocked_lift_shaft", "missing_stack_surface"]].any()↪→

19

20 # Add extra column

21 telegram_grouped_df["maybe_STO"] = (telegram_grouped_df["blocked_flight_path"]) |

(telegram_grouped_df["blocked_place_position"]) | (telegram_grouped_df["blocked_lift_shaft"]) |

(telegram_grouped_df["missing_stack_surface"])

↪→

↪→

22

23 # Set previous computed series

24 telegram_grouped_df["number_of_telegram_messages"] = group_count

25 telegram_grouped_df["time_start"] = group_time_start

26 telegram_grouped_df["time_end"] = group_time_end

27 telegram_grouped_df["error_part"] = groupedObject["error_part"].first() # Add error_part

28 telegram_grouped_df["palletizer"] = groupedObject["palletizer"].first() # Add palletizer

Codeblock 1: Cell from Jupyter notebook implementing grouping of Telegrams.

Knowledge Graphs for Improving Robot Operations in Logistics 31

5.3 Join 3: + LFL Recipes 5 DATA INTEGRATION

Once the Telegram messages are grouped per pallet, they can be joined with the previous dataset
using a join call. We use an inner join, since for the purpose of investigation we need both
Telegram data (indicating when an STO occurs) and the StackInfo data (indicating how the
pallet was stacked).

5.3 Join 3: + LFL Recipes

After combining SCADA with Telegrams (Section 5.1), and then consequently combining it with
StackInfo (Section 5.2), we are left with only one potentially hard link to execute: the LFL Recipes
dataset. From Figure 17 it is clear that there are two missing links when attempting to combine
StackInfo/Telegram data (indicated by the dashed border, and the Linking Dataset text), which
has a pallet id field, to LFL data, which has suborder id and order id fields. In Section 5.3.1 we
explain how both links (first from pallet id to suborder id, then from suborder id to order id) are
acquired, followed by how to integrate them with the existing datasets in Section 5.3.2.

5.3.1 Acquiring the missing links

There are two missing links required to link all datasets together:

1. Link from pallet id to suborder id : Pallet-To-Suborder.

2. Link from suborder id to order id : Suborder-To-Order.

Both links can be found in the same online environment from which we can acquire the SCADA
and Telegram datasets. Figure 20 shows both linking datasets side by side, the first one (Pallet-
To-Suborder) on the left, and the second one (Suborder-To-Order) on the right.

Figure 20: The Pallet-To-Suborder (left, pink) and Suborder-To-Order (right, cyan) linking data-
sets.

Extract & Transform

Extracting the first missing link, Pallet-To-Suborder, is very straightforward. We select the desired
time-frame and click a button to export to CSV. This CSV has precisely the two columns we
expect: pallet id and suborder id. The second missing link, Suborder-To-Order, when exported
gives a malformed CSV file. This means that we need to manually parse it. An example of the
raw CSV data for the toy example is shown in Codeblock 2.

1 suborder1,order1

2 "suborder2

3 suborder3",order2

Codeblock 2: Example of raw exported data for Pallet-To-Suborder linking dataset.

32 Knowledge Graphs for Improving Robot Operations in Logistics

5 DATA INTEGRATION 5.3 Join 3: + LFL Recipes

There are two main cases to parse. First, a normal line mapping the suborder to an order, such
as line 1 in Codeblock 2. Second a list variant, mapping multiple suborders to a single order, such
as lines 2 and 3 in Codeblock 2. We can extract both cases using regular expressions.

regex = re.compile("^(suborder\d*),(order\d*)$")

Codeblock 3: Regular expression for suborder,order pair: normal variant.

The regular expression for the normal variant (see Codeblock 3) is relatively straightforward.
It works by matching from the start of the line (^) select a suborder ((suborder\d*)) directly
followed by a comma (,), an order ((order\d*)), and the end of the line ($). The result is shown
in on the left of Figure 21.

Figure 21: Results of regular expressions for retrieving suborder,order pairs. Left is the normal
variant, right is the list variant.

The regular expression for the list variant (see Codeblock 4) is slightly more involved, as it requires
multiline matching; we start by matching from the start of the line (^) a singular character ",
followed by any number (* at the end) of suborders followed by a new line ((suborder\d*\n)*),
and then a single suborder without a new line ((suborder\d*)), followed by the closing quote ",
a comma (,), an order ((order\d*)), and the end of the line ($). The result is shown on the right
in Figure 21.

1 regex = re.compile(

2 '^"(suborder\d*\n)*(suborder\d*)",(order\d*)$',

3 re.MULTILINE

4)

Codeblock 4: Regular expression for suborder,order pair: list variant.

As shown in Figure 21, we retrieve groups containing suborders and orders, where the last group
is always the order. This allows us to first extract the order, then loop over the groups (except
the last element), and generative proper suborder,order pairs. All pairs can then be saved to a
CSV file that is no longer malformed.

5.3.2 Join + Pallet-To-Suborder + Suborder-To-Order + LFL

Joining the missing links into the combination that has already been made (SCADA + Telegram
+ StackInfo) is very straightforward. The pallet id field in the Pallet-To-Suborder dataset has
a one-to-one relation with the already existing pallet id field in the larger combined table. And,
after parsing the Suborder-To-Order file we see an easy to use join emerge with a many-to-one
relation between suborder id and order id. These two linking datasets behave nicely.

Knowledge Graphs for Improving Robot Operations in Logistics 33

5.4 Join 4: + Teaching 5 DATA INTEGRATION

Joining with the LFL data is, however, not a plain join due to the fact that a case on the stack is
NOT uniquely identified by its case id ; there may be multiple cases in a single stack. To resolve
this issue, we need to loop over the sequence groups (identified by sequence id) from LFL (cases in
sequence group i MUST be placed before the cases in sequence group i+ 1; this induces a partial
ordering), and then for each case we try to match it to the best case from the StackInfo dataset.

In short, we need to:

1. Loop over all recipes/suborders.

2. For a single recipe; loop over all sequence groups.

3. For a sequence group: loop over all cases.

4. For a case: loop over StackInfo information, and find the first case with identical case id
and with lowest palletise seq nr.

5. If such a case cannot be found: we cannot match for this pallet.

To do this (somewhat) efficiently (looping over rows in a pd.DataFrame, which is what we use
for the implementation, is an anti-pattern and generally not recommended), we transform into
longform tables, where a single row contains ALL information necessary for matching. The long-
form table for the toy example is shown in Figure 22. Notice how a single row indeed contains all
information for a single pallet. On these longform tables we execute a matching function imple-
menting the steps listed above. After matching, we transform back to the original format of the
table. The code for matching is available in Codeblock 7, in Appendix A.3.

Figure 22: Illustration of longform tables.

5.4 Join 4: + Teaching

The final remaining dataset to integrate is the Teaching dataset (Section 4.3). This is a trivial
integration step, as each row in the Teaching dataset is uniquely defined by its case id. It is im-
plemented as a single merge() call on a pd.DataFrame. When all datasets are joined together, we
make sure that we write the result to disk. This avoids having to recompute these computationally
expensive joins.

34 Knowledge Graphs for Improving Robot Operations in Logistics

6 DATA MODEL: GRAPH DATABASE

6 Data Model: Graph Database

This section explains all necessary steps to go from an integrated large table, to a graph database,
which is the data model we use. In Section 6.1 we discuss precisely what the data model should
contain to investigate the hypotheses HP 1-HP 4 explained in Section 3.3, which is summarised
in Section A.2. In Section 6.2 we show how each node and relation from Section 6.1 can be
implemented using Cypher.

6.1 Model Description

In this section we describe all required nodes, relations, and their properties the graph should
have so we can investigate the four hypotheses from Section 3.3. We find these requirements by
imagining first an empty graph, and then discovering the necessary data that should be present for
a particular query used to answer a particular hypothesis. More concretely, the required nodes,
relations, and properties to investigate hypothesis HP 1, HP 2, HP 3, HP 4 is described in
Sections 6.1.1, 6.1.2, 6.1.3, and 6.1.4 respectively.

6.1.1 HP 1: Incorrect placements cause more STOs.

Investigating incorrect placements in the graph model is relatively straightforward. We need the
placed (placed{XYZ}{1234}) and expected (expected{XYZ}{1234}) locations for a particular case,
as well as the offCenterX and offCenterY properties. This means to be able to answer HP 1,
we have to model at least a node in the graph corresponding to a single case. We call this node
Item, since case is a Cypher keyword and cannot be used.

Nodes:

i:Item {

placed{XYZ}{1234}: Integer,

expected{XYZ}{1234}: Integer,

offCenterX: Integer,

offCenterY: Integer

}

p:Pallet {

[pallet properties that are deemed interesting]

}

6.1.2 HP 2: Building towers in the stack cause more STOs.

Investigating towers in a stack requires us to add a property to the Item node stating which
stacking method (stacking method) LFL used for this particular case. Besides an extra property,
we need a relation that allows us to travel downwards to the pallet itself (and recognise that we
are indeed at the pallet). This means to be able to answer HP 2, in addition to Section 6.1.1 we
have to model at least the following.

Nodes:

i:Item {

stacking_method: List<String>,

[... properties from Teaching that are deemed interesting]

}

Relations:

r:ON_TOP_OF {}

Knowledge Graphs for Improving Robot Operations in Logistics 35

6.2 Model Implementation 6 DATA MODEL: GRAPH DATABASE

6.1.3 HP 3: Height gaps between cases cause more STOs.

To investigate height gaps, we need to somehow compute and store the gaps themselves. This
can nicely be done by adding it as a property to the ON TOP OF relation. In an ideal theoretical
situation, if the gap equals to 0, then this means that two cases (Item nodes) are directly on top
of each other.

Since we are not solely interested in height gaps in towers, it seems reasonable to look at both the
case raising an STO, as well as its neighbours: this means we need a NEXT TO relation explaining
which case(s) are next to the one raising an STO. Then, from the set of cases containing the one
raising an STO and its neighbours, we can investigate whether or not height gaps are extremely
prominent. This set of cases we call the related cases. This means to be able to answer HP 2,
in addition to Sections 6.1.1, 6.1.2 we have to model at least the following.

Relations:

r:ON_TOP_OF {

gap: Integer

}

r:NEXT_TO {}

6.1.4 HP 4: Overhang causes more STOs.

To investigate overhang, we need to look at the leftmost/rightmost/topmost/bottommost points
of a case, given the XY-plane, and see whether or not these points exceed the pallet boundaries.
To this end, we add the 4 properties to the item node, and a relation between node and pallet
overhang with a property denoting the size. This means to be able to answer HP 2, in addition
to Sections 6.1.1, 6.1.2, 6.1.3 we have to model at least the following.

Nodes:

i:Item {

leftmost_point: Integer

rightmost_point: Integer

highest_point: Integer

lowest_point: Integer

}

p:Pallet {

width: Integer

length: Integer

placement: Point2D

}

Relations:

r:OVERHANG {

amount: Integer,

reason: String

}

6.2 Model Implementation

Section 6.1 describes a target graph data model. The end result of Section 5 is a large table
containing data. In this section we present the method to take the large table, and create the
desired graph from it. The method starts by pre-processing the large table to create pallet.csv
and cases.csv files in Section 6.2.1. Then, for the remaining sections, we take one node or relation

36 Knowledge Graphs for Improving Robot Operations in Logistics

6 DATA MODEL: GRAPH DATABASE 6.2 Model Implementation

type from the theoretical model described in Section 6.1, and translate their requirements to a
Cypher query. Running all the translated Cypher queries will give the desired data model.

6.2.1 Pre-processing

Before we can run any query, we need to pre-process the large table created by integrating all
datasets together. Pre-processing is required due to two reasons, the first being that data is highly
skewed (many pallets have no STO error). Any attempted statistical measure on the table as-
is, is inconclusive due to the skewness. As such, pre-processing here means extracting relevant
information. The relevant information means that for each pallet, we only keep data until the
last STO. For pallets that have no STO in them, we discard them entirely (at a later point it will
be interesting to also load these, but for now they are considered as unwanted datapoints). This
preprocessing is done in python, and makes following unchecked assumptions.

1. A single telegram message corresponds to a single placed case: We already know
that this does not necessarily need to be the case due to retries. However, it may hold, in
which case we can proceed. If it does not hold, then perhaps this is a reason as to why
there are gaps in the palletise seq nr field? In any case, we simply assume this to hold
to continue with the analysis, and later come back on how it influences results if it does not
hold.

2. If the ith telegram message states that there was an STO, then the ith placed
case is deemed as having raised the STO: See previous unchecked assumption above,
we know this does not need to hold.

For the remainder of Section 6.2 (more specifically, the referenced Cypher queries in each subsec-
tion) we assume that there are two files present in the import directory for Neo4J: pallets.csv and
cases.csv. The first, pallets.csv, contains information related to a pallet or stack, whereas
cases.csv contains information on cases (including on which pallet they are supposed to be
stacked). Examples of the pallets.csv and cases.csv for the pallet of order 1 of the toy ex-
ample can be found in Tables 7 and 6 respectively. Note that those tables do not show all fields,
as this cannot be displayed easily on paper.

6.2.2 Node Item

To create the Item node – we call it Item since case is a reserved keyword in Cypher – we take
the cases.csv file, and for each row we create a Item node. Since by default when loading from
CSV all properties are strings, we manually set required data types where necessary. Cypher
contains a point type which we can use for points in space, so fields that represent points such
as placed{XYZ}{1234} can be cast to this type. Loading all data in batches as to not destroy
memory is done as illustrated in Cypher Query 10.

6.2.3 Node Pallet

Creating the pallet node(s) can be done in two ways:

1. Given the Item nodes, match those where placement id states it is a pallet, extract the
pallet id field, and create a node from that.

2. In python, group by pallet id, export as CSV, and then load is similar to the Item node.

We choose the second option since this is computationally-wise faster, and its result is precisely
the pallets.csv file, where each row describes metadata of a particular pallet, uniquely defined
by a pallet id. Similar to creating the Item node, we manually set required data types where
necessary. Loading all data is again done in batches. The resulting query is shown in Cypher
Query 11.

Knowledge Graphs for Improving Robot Operations in Logistics 37

6.2 Model Implementation 6 DATA MODEL: GRAPH DATABASE

6.2.4 Relation ON

Given Item and Pallet nodes, we want to be able to say that a particular Item is ON a particular
Pallet: this relation relates Items to Pallets. If an Item node and Pallet node have the same
pallet id, then an Item is considered to be placed on the Pallet. The related Cypher statements
are shown in Cypher Query 12.

6.2.5 Relation PLACED BEFORE

Given two Item nodes, say A and B, we want to be able to say that A was placed before B,
similar to how the palletise seq nr indicates the order of cases stacked on a pallet. Since entries in
cases.csv are ordered by time, and thus by palletise seq nr, we can use Neo4J’s id() function,
which is a function returning the internal identifier Neo4J uses for a particular node. These
identifiers are assigned as an increasing count, in order of insertion in the database. So, due to
the way data is imported, the check using id() is always correct. The query itself thus checks
that both A and B have identical pallet id fields, and that id(A) = id(b)− 1. The related Cypher
statements are shown in Cypher Query 13.

6.2.6 Query set STO property

We want to be able to relate cases with STOs to other cases (among others), but this is impossible
if there is no property indicating which case has an STO. Since we did not yet add this property
during pre-processing (because the query we describe here was already written), we need to add
the property with a Cypher query. It works by matching Item A, then optionally matching Item

B such that (a)-[:PLACED BEFORE]->(b) is null. In this case, A has no outgoing arrows for the
PLACED BEFORE, indicating that the node corresponds with the case placed last in cases.csv, and
thus is assumed to be the case causing the STO (see the assumptions in Section 6.2.1). The related
Cypher statements are shown in Cypher Query 14.

6.2.7 Relation ON TOP

Deciding on a specific definition on when precisely some case A is considered to be on top of
another case B is a design decision that should be made in accordance with experts. In this
work, we choose the simplest possible definition: as long as there is more than 0 mm overlap
between A and B (overlap is considered from a top-down view), then A is considered on top of B
each other. Translating into Cypher, we have:

MATCH

(a:Item),

(b:Item)

We need to ensure that they are on the same pallet.

WHERE

a.pallet_id = b.pallet_id

Then, we need to actually encode the relation into Cypher. Effectively, when looking at the
stack from a top-down view, we need to find out if any corner of item A is contained within the
coordinates of item B. Cypher can do this for us with point.withinBBox(point, lowerLeft,

upperRight). If then the z coordinates of A are higher than B, then A is on top of B.

// Do this for a.placed1, a.placed2, a.placed3, a.placed4 with ORs in between

point.withinBBox(

point({x: a.placedX.x, y: a.placedX.y}), // point to check

point({x: b.leftmost_point, y: b.bottommost_point}), // lower left bounding box

point({x: b.rightmost_point, y: b.topmost_point}), // upper right bounding box

)

38 Knowledge Graphs for Improving Robot Operations in Logistics

6 DATA MODEL: GRAPH DATABASE 6.2 Model Implementation

The problem is that this is extremely slow to do. A better approach is to pre-compute the
extreme points (leftmost, bottommost, rightmost, ...) of all cases, and “manually” write down all
different situations where item A can be on top of B. Since doing this is tedious work, we use a
query generator as shown in Script 8. The resulting query can be found as Query 15 in Appendix
A.4. The generator roughly works as follows:

1. On top of the script, define whether or not to output queries for each individual situation.
These may be useful to investigate, for instance, only situations where A is completely on
top of B, with all edges of A contained in B.

2. Give names to possible situations in X and Y axis.

3. Create a dictionary, where each situation (dictionary keys are the names from step 2) is
encoded.

4. Write boilerplate strings that will make up the final query.

5. Loop through the map, and generate the final query.

6. Loop a second time to create the reason property, which will be the (combined) name as
decided in step 2.

7. Some more bookkeeping to keep the relation correct, and add the required gap property.

Realise that there are a total of 4 different situations for the X axis and the Y axis.

X = ["R_EDGE", "BOTH_X", "L_EDGE", "NONE_X"] # 4 situations

Y = ["B_EDGE", "BOTH_Y", "T_EDGE", "NONE_Y"] # 4 situations

The 4 situations for the X axis are illustrated in below figures.

Figure 23: R EDGE: Only the right edge is on top. Figure 24: L EDGE: Only the left edge is on top.

Figure 25: BOTH X: Both edges are on top. Figure 26: NONE X: None of the edges are on top.

Encoding these situations is done in the dictionary created in step 3. For instance, to encode
the BOTH X situation (bottom left), we need that both edges of A are contained within B on the
X-axis. This amounts to having the leftmost point of A being larger than the leftmost point of

Knowledge Graphs for Improving Robot Operations in Logistics 39

6.2 Model Implementation 6 DATA MODEL: GRAPH DATABASE

B, and having the rightmost point of A being smaller than the rightmost point of B. With the
precomputed properties, encoding this is relatively straightforward. Note that equality is added
to not exclude very rare situations where items line up perfectly.

"BOTH_X": [

"a.leftmost_point >= b.leftmost_point", # equal to left

"a.rightmost_point <= b.rightmost_point" # equal to right

],

A complete illustrations of all 16 situations (4 for the X axis, times 4 for the Y axis) is shown in
Figure 27. Note that all these situations are generated by the query generator in Script 8.

Figure 27: Overview of 16 possible situations for the ON TOP relation.

6.2.8 Relation NEXT TO

Similar to how we create the ON TOP relation, we can create the NEXT TO relation by emulating
the same steps but with a different plane than the XY-plane. The problem is that in stead of 16
possible situations before, we now have 64 situations as the Z axis gets involved. Another way
to reason about it, is that we have to compute ON TOP, but for 4 different sides: the left (L), the
front (F), the right (R), and the back (B). This is effectively what we do with the generator code
shown in Script 9. The resulting query can be found as Query 16 in Appendix A.4. The generator
roughly works as follows:

1. On top of the script, define whether or not to output queries for each individual situation.
These may be useful to investigate, for instance, only situations where A is next to B, and
where B is taller than A, and where A is contained in B.

2. Give names to possible situations in X, Y, and Z axis.

3. Create a dictionary, where each situation (dictionary keys are the names from step 2) is
encoded.

4. Write boiler plate strings that will make up the final query.

5. Loop through the map, and generate the final query.

40 Knowledge Graphs for Improving Robot Operations in Logistics

6 DATA MODEL: GRAPH DATABASE 6.2 Model Implementation

6. Loop a second time to create the reason property, which will be the (combined) name as
decided in step 2.

7. Some more bookkeeping to keep the relation correct.

As mentioned earlier, we need to consider four different sides: the left, the front, the right, and
the back. These are encoded in the dictionary of step 3 as follows.

"L": [

"a.rightmost_point < b.leftmost_point",

],

"F": [

"a.backmost_point < b.frontmost_point"

],

"R": [

"a.leftmost_point > b.rightmost_point"

],

"B": [

"a.frontmost_point > b.backmost_point"

],

Then, we need to look at the XZ-plane to find which case is bigger or smaller. The 4 possible
situations here are encoded in the Z list.

Z = ["HIGH_Z", "SMALL_Z", "LOW_Z", "BIG_Z"] # 4 situations

Finally, we have the XY-plane to consider, in which we have to distinguish between horizontal sides
(front and back) and vertical sides (left and right). Combining all of these different possibilities
together, we get a combination of the situations shown in Figure 28, where from each column one
must be chosen (leading to, as explained before, a total of 4 · 4 · 4 = 64 different situations).

Figure 28: Illustration of “the three columns” where any combination is a single possible situation
for the NEXT TO relation.

To elaborate, we can choose top from the left column, mid from the middle column, and small
from the right column. This combination gives us the situation where for two Items A and B
the frontmost point of A is in-between the frontmost and backmost points of box B (top), the
leftmost and rightmost points of A are contained within the leftmost and rightmost point of B
(mid), and the lowest and highest points of A are contained within the lowest and highest points
of B (small).

Knowledge Graphs for Improving Robot Operations in Logistics 41

7 RESULTS

7 Results

In this section we describe, based on pallet 1 from order 1 of the toy example (Figure 12), what
we expect the data model to look like. For convenience, pallet 1 is shown again in Figure 29. This
Figure (29) shows the stack as computed by LFL.

Figure 29: Pallet 1 from Order 1 of the toy example (Figure 12).

After creating the entire data model (recall that this is created based on the recorded values, as
opposed to the computed ones) we expect it to, for instance, show that the yellow-coloured case
is on top of the blue-coloured case. Similarly, we expect the cyan-coloured case to be next to
both the wine-coloured case, as well as the purple-coloured case. To provide a systematic method
for evaluating if the created graphs shows what we “expect” it to, we consider each (node and
relation) query described in Section 6.2 and give an illustration of its expected/desired/wanted
output. This output is created by “manually” executing the related Cypher queries, using the toy
example data for only order 1. Parts of the related cases.csv and pallets.csv files obtained
after pre-processing the toy example are shown in Table 6 and Table 7 respectively.

pallet id palletise
seq nr

case id rightmost
point

leftmost
point

lowest
point

highest
point

pallet1 0
pallet1 1 5 343 0 0 121
pallet1 2 3 1004 344 66 131
pallet1 3 4 595 345 0 66
pallet1 4 2 724 596 131 241
pallet1 5 1 1003 724 111 221

Table 6: Part of the cases.csv file corresponding with the first pallet of the toy example.

pallet id

pallet1

Table 7: Part of the pallets.csv file corresponding with the first pallet of the toy example.

If the expected and realised output correspond with one another, then this implies that the graph
can be used for data analysis. If not, then either the corresponding query is incorrect, or the data
that the query uses is inaccurate, potentially causing the graph to become unusable.

42 Knowledge Graphs for Improving Robot Operations in Logistics

7 RESULTS 7.1 Node Item – see Section 6.2.2

7.1 Node Item – see Section 6.2.2

The expected results after executing the query to create Item nodes (Query 10) is shown in Figure
30. The reason why Figure 30 illustrates the expected situation is as follows: the pre-processed
cases.csv file lists precisely five cases, each with unique case id, to be stacked for pallet with
pallet id being pallet1. The interested reader can verify correctness by looking at Table 6. For
convenience, we have coloured the nodes according to their case id, and it immediately becomes
clear that the nodes correspond with the cases as shown in Figure 29. Verification is thus done
by looking at the relevant data, paying specific attention to the case id of cases (these need not be
unique, but the number of cases placed should correspond with the number of nodes created).

Figure 30: Expected results after running Query 10.

For the 50 inspected pallets, all Item nodes are created as expected.

7.2 Node Pallet – see Section 6.2.3

The expected results after executing the query to create Pallet nodes (Query 11) is shown in
Figure 31. The reason why Figure 31 illustrates the expected situation is as follows: the pre-
processed pallets.csv file lists precisely one pallet with pallet id being pallet1. The interested
reader can verify correctness by looking at Table 7. There is only one node with type Pallet

created, corresponding to the one pallet with pallet id being pallet1. Verification is thus done
by looking at the relevant data, paying specific attention to the pallet id of the pallet (in this case,
the pallet id field uniquely defines a pallet).

Figure 31: Expected results after running Query 11.

For the 50 inspected pallets, all Pallet nodes are created as expected.

7.3 Relation ON – see Section 6.2.4

The expected results after executing the query to create the ON relation (Query 12) is shown
in Figure 32. The reason why Figure 32 illustrates the expected situation is as follows: the pre-
processed cases.csv file lists precisely five cases, each with unique case id, to be stacked for pallet
with pallet id being pallet1. The interested reader can verify correctness by looking at Table 6:
for any pair of nodes A, B (with A having type Item and B having type Pallet) satisfying the
path query (a:Item)-[r:ON]->(b:Pallet), we require that the row in cases.csv corresponding
to case A contains the pallet id of B in its pallet id field. Note that this is precisely how the
corresponding Cyper query (Query 12) creates the relation. Similar to Section 7.1, for convenience
we have coloured the nodes according to their case id, and it immediately becomes clear that the

Knowledge Graphs for Improving Robot Operations in Logistics 43

7.4 Relation PLACED BEFORE - see Section 6.2.5 7 RESULTS

nodes correspond with the cases as shown in Figure 29. Verification is thus done by looking at
the relevant data, paying specific attention to the case id of cases, and checking if their pallet id
corresponds to the pallet id of the Pallet node.

Figure 32: Expected results after running Query 12.

For the 50 inspected pallets, all ON relations are created as expected.

Figure 33: Expected results after running Query 13.

7.4 Relation PLACED BEFORE - see Section 6.2.5

The expected results after executing the query to create the PLACED BEFORE relation (Query 13)
is shown in Figure 33. The reason why Figure 33 illustrates the expected situation is as follows:
the pre-processed cases.csv file lists precisely six entries where the pallet id field is equal to
pallet1, and it lists those entries with a specific palletise seq nr. The interested reader can
verify correctness by looking at Table 6: for any pair of nodes A, B (regardless of node type)
satisfying the path query (a)-[r:PLACED BEFORE]->(b), we require that the row in cases.csv

corresponding to node A contains identical pallet id to the row corresponding to node B, and
we require that the palletise seq nr field of A is less than or equal to that of B. Furthermore, if A

44 Knowledge Graphs for Improving Robot Operations in Logistics

7 RESULTS 7.5 Relation NEXT TO – see Section 6.2.8

has type Pallet, then A is not allowed any incoming arrow. Note that this is precisely how the
corresponding Cyper query (Query 13) creates the relation. Similar to Section 7.1, for convenience
we have coloured the nodes according to their case id, and it immediately becomes clear that the
nodes correspond with the cases as shown in Figure 29. Verification is thus done by looking at the
relevant data, paying specific attention to the palletise seq nr field for nodes as argued above.

For the 50 inspected pallets, all PLACED BEFORE relations are created as expected.

7.5 Relation NEXT TO – see Section 6.2.8

An abstraction of the expected results after executing the query to create the NEXT TO relation
(Query 16, generated by Script 9) are shown in Figure 34. In particular, we abstract from the
underlying reason property of the relation, to make the illustration easier to parse. The reason
why Figure 34 illustrates the expected situation is as follows: the pre-processed cases.csv file
contains precisely five cases, each with unique case id, to be stacked for pallet with pallet id
being pallet1. For these cases, it contains information on the extreme points (leftmost point,
rightmost point, . . .). As example, based on the extreme points, one can see that for the case with
case id 4 its leftmost point is 345 and the rightmost point of case with case id 5 is 343. Since
there is also some overlap in height, indicated by the highest point and lowest point fields (the
highest point of the case with case id 4 is 66, which is contained between the lowest point (0) and
highest point (121) of case with case id 5), we expect the case with case id 4 to be next to the case
with case id 5. Note that Section 6.2.8 fully describes all necessary conditions and situations when
we expect cases to be next to one another. The interested reader can verify correctness for all
relations shown in Figure 34 by looking at Table 6. Note that for two cases A and B, if A is next
to B then this implies B next to A (with opposite reason property): this is nicely shown in the
abstraction of Figure 34 by means of bidirectional arrows. Similar to Section 7.1, for convenience
we have coloured the nodes according to their case id, and it immediately becomes clear that the
nodes correspond with the cases as shown in Figure 29. Verification is done by looking at the
relevant data, paying specific attention to the extreme points for Item nodes as argued above.

Figure 34: Expected results after running Query 16, generated by Script 9.

For the 50 inspected pallets, all NEXT TO relations are created as expected. Further-
more, performing an identical abstraction as done in Figure 34 shows identical results
for all 50 inspected pallets, implying that the NEXT TO relation truly is bidirectional as
it should be.

7.6 Issue: Relation ON TOP – see Section 6.2.7

The expected results after executing the query to create the ON TOP relation (Query 15, generated
by Script 8) are shown in Figure 34. The reason why Figure 34 illustrates the expected situation is

Knowledge Graphs for Improving Robot Operations in Logistics 45

7.6 Issue: Relation ON TOP – see Section 6.2.7 7 RESULTS

as follows: the pre-processed cases.csv file contains precisely five cases, each with unique case id,
to be stacked for pallet with pallet id being pallet1. For these cases, it contains information on
the extreme points (leftmost point, rightmost point, . . .). As example, based on the extreme points,
one can see that for the case with case id 3 its highest point is 131 and the lowest point of case
with case id 2 too is 131. Since there is also some overlap in width, indicated by the leftmost point
and rightmost point fields (the rightmost point of the case with case id 4 is 724, which is contained
between leftmost point (344) and rightmost point (1004) of case with case id 2), we expect the
case with case id 2 to be on top of the case with case id 4. Note that Section 6.2.7 fully describes
all necessary conditions and situations when we expect cases to be on top of one another. The
interested reader can verify correctness for all relations shown in Figure 35 by looking at Table
6. Note that for two cases A and B, if A is on top of B then surely B cannot be on top of A.
Similar to Section 7.1, for convenience we have coloured the nodes according to their case id, and
it immediately becomes clear that the nodes correspond with the cases as shown in Figure 29.
Verification is done by looking at the relevant data, paying specific attention to the extreme points
for Item nodes as argued above, similar to the NEXT TO relation (Section 7.5).

Figure 35: Expected results after running Query 15, generated by Script 8.

In stead of the expected model shown in Figure 35, we see results similar to Figure 36. For
convenience, we extract the relevant situations and present them in Figure 37.

46 Knowledge Graphs for Improving Robot Operations in Logistics

7 RESULTS 7.6 Issue: Relation ON TOP – see Section 6.2.7

Figure 36: Actual results after running Query 15, generated by Script 8.

Figure 37: Illustration of the three situations visible in Bloom for the original dataset.

The situation on the left in Figure 37 (a) is incorrect, as the blue-coloured case is not supposed to
be on top of the cyan-coloured case (see Figure 29: the cyan-coloured case is supposed to be on
the blue-coloured case). The situation in the middle in Figure 37 (b) can never be true, since A
on top of B implies B not on top of A. Nevertheless, we do observe this situation, and we suspect
that it is (somehow) due to overlapping values for the Z-axis, since material phasing for now is still
science-fiction. We expect only the yellow-coloured case to be on top of the blue-coloured case, but
not the other way around (see Figure 29: the yellow-coloured case is on top of the blue-coloured
case). Only the situation depicted on the right in Figure 37 (c) is correct, as it shows a single
direct relation between the purple-coloured case and the blue-coloured case precisely as shown in
Figure 29.

For the 50 inspected pallets, NONE of the relations are created as expected. This
is particularly interesting, as the NEXT TO relation was created based on the ON TOP

relation.

Knowledge Graphs for Improving Robot Operations in Logistics 47

8 DISCUSSION

8 Discussion

In Section 7 we show that there is a critical data quality issue for the placements in the Z axis,
making the data model as described in Section 6 for now unusable. We start this section by
discussing the data quality issue in Section 8.1. Then, we proceed to discuss how the data model
is to be used (should these data quality issues not exist) in Section 8.2, by showing how we want to
answer the hypotheses from Section 3.3. Third, in Section 8.3, we (briefly) restate all assumptions
and illustrate why they may potentially invalidate our results. We also provide other threats to
validity of the thesis. We end the discussion in Section 8.4 where we communicate future avenues
of research that might be of interest to Vanderlande and academia.

8.1 The Data Quality Issue

We explain the data quality issue in Section 8.1, but to further illustrate the differences between
expected and realised behaviour, consider the illustration in Figure 38: on the left we show the
pallet that is expected, corresponding one to one with Figure 29 and the expected graph in Figure
35, and on the right we show the pallet based on recorded placements, corresponding with the
realised graph shown in Figure 36. Clearly, these stacks are not identical (which in an ideal world
they should be).

Figure 38: Illustration of the data quality issue.

We believe that the underlying cause for this critical data quality issue is specifically the recorded
placedZ{1234} values: first realise that the NEXT TO relation (Section 7.5 for results, Section 6.2.8
for implementation) is created after the ON TOP relation (Section 7.6 for results, Section 6.2.7 for
implementation). The NEXT TO relation, which uses identical logic in the way the Cypher query
is constructed to the ON TOP relation, appears to have no issues at all based on the 50 pallets we
have looked at. But the ON TOP relation does have issues for all of these 50 pallets. Now, since the
queries use identical logic, aside from human errors such as typos, we can exclude the Cypher query
is wrong as reason for the observed behaviour. As such, we believe that the underlying reason
is hidden in the data that the queries use. The NEXT TO relation predominantly focuses on the
placedX{1234} and placedY{1234} values through the computed leftmost point, rightmost point,
frontmost point, and backmost point fields, whereas the ON TOP relation predominantly focuses on
the placedZ{1234} values through the computed highest point and lowest point fields. Since both
queries creating the relations have identical logic, we conclude that the data quality issue is only
present for placedZ{1234} values. Another way to reason is as follows: if the data issue is present
for either placedX{1234} or placedY{1234} values, then we expect the NEXT TO relation to produce
similar situations to those described in Figure 37. These, however, do not occur in the subset of
data we have looked at. As such, we exclude placed{XY}{1234} as having data quality issues.

While not desirable, it does to some extent make sense that we observe a data quality issue for
placedZ{1234} values, but not for placed{XY}{1234} values. Recall that the STO camera (Section
3.2.1) uses computer vision to check if cases are placed where expected. While the internal workings
on how the computer vision algorithm works is confidential, it is not too far-fetched to imagine
that it is not perfect, and may introduce inaccuracies. These inaccuracies will be higher for the
Z axis (and thus the placedZ{1234} values), as the camera has a top-down view, and intuitively
differentiating between left and right (X axis) or front and back (Y axis) is (considerably) easier

48 Knowledge Graphs for Improving Robot Operations in Logistics

8 DISCUSSION 8.2 Graphs Usage

than perceiving depth (Z axis) – see for instance [63] where authors compare accuracy of various
stereo cameras, or [64] for a lecture explaining why depth perception is hard. The STO camera
seemingly works well enough for raising STOs, but the observed inaccuracies pose the question
if there are missed STO errors. Another potential reason as to why we observe this issue for
placedZ{1234} values, but not for placed{XY}{1234} values is due to the handover of support
explained in Section 3.2.3. This handover occurs from top to bottom (Z axis). As such, it is
intuitive that the values it influences most is those related with Z axis: the placedZ{1234} values.

We state that this data quality issue is critical since it invalidates any approach using the graph
that we want to use to answer the hypotheses from Section 3.3. For HP 1 we want to investigate
incorrect placements, which rest upon accurate enough measured placements for all axes, and thus
also the Z axis and the placedZ{1234} values. For HP 2 we are interested in towers, but towers
naturally cannot be investigated without the use of the ON TOP relation (there is no way to look
at towers if you do not know how cases relate in the Z axis). For HP 3 we are interested in
height gaps, but height gaps too depend solely on the placedZ{1234} values, which are inaccurate.
Finally, for HP 4 we want to investigate overhang, but as already argued earlier this depends on
data that we do not have (Section 4.4). For a more elaborated version per hypothesis, see Section
8.2 where we show possible graph usage for hypothetical data without quality issues.

8.2 Graphs Usage

In this section, per hypothesis, we explain how the graph can be used if there was no data quality
issue. There are two paradigms: either it comes down to load the graph in Bloom, and add
colours in a smart way to visually inspect the data, or it is use Cypher to query paths for new
data that otherwise would be very hard to obtain. We demonstrate these paradigms by means of
examples, where all examples are based upon only the related cases to the STO error: if A is
the case with the STO error, its related cases is the set containing A, all neighbours B of A that
correspond to (a:Item)-[r:NEXT TO]->(b:Item), and then for A and all its neighbours the cases
that support them, that is, all cases that are matched by repeatedly taking cases C corresponding
to (a:Item)-[r:ON TOP]->(c:Item). To illustrate, for the pallet in Figure 29, if the purple-
coloured case is the one with STO, then the set of related cases include the purple-coloured case
(STO itself), cyan-coloured and yellow-coloured cases (neighbours), and the blue-coloured case
(repeatedly go down from STO and its neighbours until pallet is reached).

Important to note is that the discussion here only touches on the surface of all pos-
sibilities the graph brings in terms of analytical power, either through visualisation or
direct querying. Also note that due to having no data to run on, provided Cypher
queries in this discussion have not been verified for correctness.

8.2.1 HP 1: Incorrect placements cause more STOs.

To investigate this hypothesis, we first need to find incorrect placements. In the available data
incorrect placements are found by looking at the offCenter{XY} fields, or by comparing the
expected{XYZ}{1234} fields with the placed{XYZ}{1234} fields, keeping in mind how these related
to one another (see Section 4.4). Questions that can be answered using a tabular format are
limited mostly to statistics based on or over these fields, or need fancy custom-made visualisations
(plots). Using the graph database and a graph visualisation tool such as Bloom one can answer
various questions on incorrect placements by both filtering on relations (/properties/nodes), and
colouring relations (/nodes) based on properties. For instance, one can colour Item nodes with
a gradient that increases based on the value of the offCenterX or offCenterY field. By looking
at the hierarchical view, if the colour consistently increases for the gradient it is evident that
the more layers there are, the higher the offCenterX or offCenterY values. Effectively, the error
propagation in the pallet is directly visible. By doing this for multiple pallets at the same time,
one can potentially find patterns.

Knowledge Graphs for Improving Robot Operations in Logistics 49

8.3 Threats to Validity 8 DISCUSSION

8.2.2 HP 2: Building towers in the stack causes more STOs.

To investigate this hypothesis, we first need to (define and) find towers in a stack. If we define
towers as the physically built towers, then in the available data towers are found by looking at
the placed{XYZ}{1234} fields. In tabular format, it is extremely hard to see such towers, unless
visualisations are used (e.g. plotting the stack in 3D space). In a graph visualisation tool such as
Bloom, which visualises directly the physical stack, one can immediately see towers by filtering on
the ON TOP relation. With Cypher one could write a query that counts the number of cases that are
below the case with STO: MATCH path = (a:Item {sto: True})-[r:ON TOP*]->(b:Pallet)

RETURN LENGTH(p) - 1 matches this path, then returns the length minus one to accommodate
for the extra selected node of type Pallet, effectively counting cases. This can then be exported
as CSV to analyse with statistical measures as desired.

8.2.3 HP 3: Height gaps cause more STOs.

To investigate this hypothesis, we first need to find height gaps. In the available data height gaps
are found by looking at the placed{XYZ}{1234} fields. In tabular format, it is extremely hard to
see height gaps, unless visualisations are used (e.g. plotting the stack in 3D space). In a graph visu-
alisation tool such as Bloom, which visualises directly the physical stack, one can immediately see
and investigate height gaps by colouring the ON TOP relation based on the gap property, allowing
for visual analysis as desired. Note that horizontal gaps can be investigated by doing the same for
the NEXT TO relation. We can also directly use Cypher to compute statistics over the gaps. For in-
stance, we can compute the average, highest, lowest, or other statistic of the gap over a path from a
case down to the pallet, and see if for cases with STOs these significantly differ from those without
STO. For the average gap per path, the corresponding Cypher query is MATCH path = (a:Item

{sto: True})-[rels:ON TOP*]->(b:Pallet) RETURN REDUCE(avgGap = 0, r IN rels | avgGap

+ (r.gap)/(LENGTH(path) - 1)) AS averageGap.

8.2.4 HP 4: Overhang cause more STOs.

To investigate this, one needs to find overhang of cases with respect to the pallet. While not cur-
rently present in the data, for the sake of discussion we assume that from the offCenter{XY} fields
we can accurately retrieve where pallets are placed, and consequently compute their leftmost point,
rightmost point, frontmost point, and backmost point values to store as properties for Pallet

nodes. Then, for each Item nodeA and Pallet nodeB corresponding with (a:Item)-[r:ON]->(b:Pallet)
we can compute overhang directly based on relatively simple conditions (if leftmost point of A is
less than leftmost point of B, then there is overhang on the left side - similar reasoning for front,
back, and right sides) and store them either as properties in Item nodes, or possibly more con-
veniently directly in the ON relation, similar to how the NEXT TO and ON TOP relations have gap
and reason properties.

If we assume the data is present in the ON relation, then investigating overhang can be done by look-
ing at the average, highest, lowest, or other statistic of overhang over a path from a case down to
the pallet, and see if for cases with STOs these significantly differ from those without STO. For the
highest overhang for cases on a path down to the pallet, the corresponding Cypher query is sim-
ilar to MATCH (a:Item {sto: True})-[rels:ON TOP*]->(b:Pallet) MATCH (a)-[s:ON]-(b)

WITH MAX(s.overhang) as highestOverhang RETURN highestOverhang.

8.3 Threats to Validity

At the start of the project, we had already decided on possibly using a graph database. By not
keeping an open mind from the start, we may have influenced our thinking and prioritised certain
research questions over others, causing us to potentially miss particular interesting questions that
could also be worthwhile investigating. This is not necessary a threat to the validity of the

50 Knowledge Graphs for Improving Robot Operations in Logistics

8 DISCUSSION 8.4 Future Work

presented work, but it does mean that using a graph database as data model for investigating
STO errors is potentially a suboptimal approach.

That said, the current approach seems rather decent: throughout the work, we make only three
assumptions. The first assumption, from Section 5.1, states that Telegram messages (described in
Section 4.2) contain enough information to fully describe when STOs occur. The STO occurrences
are present in the SCADA dataset (described in Section 4.1). We “verify” this assumption (using
the script in Codeblock 5 in Appendix A.3) on an arbitrarily chosen subset of the SCADA dataset,
and from that we conclude that it holds in general. This does not need to be the case:
since the subset of the SCADA dataset used was arbitrarily chosen, there is little chance that
it is representative of the entire dataset. This assumption can be mitigated by implementing
the “hard” time-based join (explained in Section 5.1) in stead, which was not done due to time
constraints.

The second and third assumptions are made in the introductory paragraph of Section 6, where it is
explained how the combined dataset after integration (result from Section 5) must be preprocessed
so it can be used for a Graph Database. The assumptions are explicitly mentioned in their
respective section, but for completeness sake we show them here too.

1. A single telegram message corresponds to a single placed case.

2. If the ith telegram message states that there was an STO, then the ith placed case is deemed
as having raised the STO.

We know that a single telegram does not correspond to a single placed case. This has been
illustrated numerous times throughout the work. As a logical consequence of it not holding, we
know that if the ith telegram message states that there was an STO, then the ith placed case does
not need to be the case having raised the STO. The reason why we work with these assumptions,
even if we already know they do not hold, is because they are necessary to continue with the
analysis. If we cannot make these two assumptions, we cannot accurately pinpoint an STO case
in a pallet. This in itself is an interesting avenue of research.

Besides the assumptions made, at the end of Section 5.2, we aggregate data to a higher level of
abstraction. In particular, we refer to the grouping of Telegram messages (described in Section 4.2)
per pallet, and redefining the Boolean indicator variables to be on a pallet level. This aggregation
effectively loses crucial information (which specific Telegram related to the STO error). However,
this crucial information can only be used if we know how to relate a Telegram message to a case.

8.4 Future Work

In Section 8.3 we hint at two potential questions that need an answer. The first is finding how to
accurately pinpoint for which case an STO error was raised. Perhaps there are other datasets that
include this information, which should then be integrated in the current prototypical integration
pipeline explained in Section 5. If this is not recorded somewhere, then more thought is necessary
on finding a way to record the information, so data-driven approaches like this work are feasible.

The second potential question from hinted at in Section 8.3 is finding precisely how a Telegram
message related to a placed case from the StackInfo dataset. This most likely is related to previous
paragraph, and it is not too far-fetched to think that by answering either question, both will be
answered. Similar to previous paragraph, finding an answer to this question is interesting, as it
better enables data-driven approaches like this work.

Besides the questions from Section 8.3, perhaps even more pressing, is finding how to combat
the data quality issue discussed in Section 8.1. It seems very weird that cases are recorded as
being stacked inside each other, while the STO camera works well enough to raise STO errors.
Vanderlande might wish to investigate this phenomenon by looking at the STO camera’s accuracy,

Knowledge Graphs for Improving Robot Operations in Logistics 51

8.4 Future Work 8 DISCUSSION

as well as the code that produces the StackInfo dataset (described in Section 4.4). Even more,
Vanderlande might wish to investigate if there is possible concern for missed STO errors due to
inaccurate recorded placed Z values.

Yet another potentially interesting avenue for Vanderlande is hinted at in Section 4.4; sometimes,
the palletise seq nr does not increase as a normal count. Perhaps this phenomenon is by itself an
indicator for potential errors that are not yet recorded in the system.

Besides abnormalities about the data, in an ideal setting the proposed data model can be used
to its full potential. It can be extended to an Event Knowledge Graph (proposed in [13]) and
the techniques from said paper can then be applied. The graph can be further extended to the
entire palletizer cell, as opposed to only pallets themselves, allowing Vanderlande to investigate
all related errors to the cell in a new way. Other potential causes for STOs, besides the four from
Section 3.3, can also be investigated using a Graph Database as data model (or even the integrated
large table directly). Some examples of potential causes that have not been covered by this work,
but might be interesting:

• Inaccurate (assumptions in) Teaching data.

• Inaccurate heuristics in LFL. This is a particularly interesting idea, as the graph database
models the physical structure of the stack. There may be interesting properties to be computed
on the graph that can improve the heuristics.

• Inaccurate tolerances for weight/size. This too is a particularly interesting idea. The graph
can be queried to find answers to ideas such as “the higher on the pallet, the higher the
measurement errors, the more STOs”.

• Potential mechanical faults (one cell has proportionally more STO errors than others).

• Slanted palletizer lifts (STOs occur spatially only in a particular area, say the bottom right).

Besides future work for within Vanderlande, in academia this work opens many potentially in-
teresting avenues of research. Recall the entire section on Reliability of Machines (Section 2.3),
and that most (almost all) cited sources do not use a Graph Database as data model. It might
be interesting to investigate to what extent Graph Databases can be used to improve existing
methods for reliability, or even create entirely new methods.

52 Knowledge Graphs for Improving Robot Operations in Logistics

9 CONCLUSION

9 Conclusion

In this work we have discovered which datasets are relevant to investigating underlying causes for
STOs (see Figure 17 on how these datasets relate), and we give a proof of concept data integration
pipeline combining these datasets in Section 5, delivering on half of outcome D2. After integrating
all data, we have shown which properties should be present in a knowledge graph encoding the
physical setting of the palletisation process in Section 6.1, fully delivering on desired outcome D1.
We have given quite the explanation on how to implement this graph in Section 6.2, starting from
the large table as retrieved at the end of Section 5, delivering on the other half of D2. Finally, we
evaluated which questions about the palletisation process can currently be answered reliably on
the graph, delivering on D3. We find that there is a critical data quality issue with respect
to the recorded Z axis values of cases on pallets, causing the created graph to be unusable in its
current state (and as such we did not answer hypothesis HP 1, HP 2, HP 3 or HP 4). We
end the thesis with a discussion on the data quality issue (Section 8.1), and how we envision that
the graph can be used if data was nice (Section 8.2). We strongly believe in the analytical power
that graph databases bring, and as such recommend Vanderlande to look at the suggestions from
Section 8.4 for making the graph usable.

Knowledge Graphs for Improving Robot Operations in Logistics 53

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 The Vanderlande STOREPICK evolution. The info-graphic shows the various com-
ponents that make up STOREPICK. 2

2 Example property graph, illustrating the various graph properties it has, adapted
from [7]. 4

3 Illustration of an automatic palletizer cell. 11
4 Illustration of robot arm and how it moves through waypoints. 12
5 Illustration of the pick-to position: the pallet lift. 13
6 Illustration of the first type of local correction that the palletizer robot performs. . 13
7 Illustration of the second type of local correction that the palletizer robot performs. 14
8 Illustration of incorrect placements: The left case (A) was placed in a different place

than expected, causing the right case (B) to either crush (A) when placing, or being
placed in a way that it falls down. 14

9 Illustration of a tower in the stack: The red case is built into a tower, without
surrounding cases, causing it to possibly fall over to the left or right. 15

10 Illustration of height gaps in a stack: The red cases are placed in such a way that
potentially they might shift due to height gaps in the stack. The purple-blue star
indicates a possibility for cases (A) and (B) to fall into the gap completely. 15

11 Illustration of overhang: Due to the red case being placed with considerable over-
hang, there is a chance that (during palletization) it and the cases on top of it shift
off the pallet. 16

12 Pallets in the toy example. 18
13 The SCADA (left, blue) and Telegram (right, green) datasets. 20
14 The Teaching (left, light blue) and StackInfo (right, yellow) datasets. 22
15 Number of cases per pallet, per palletizer cell. 25
16 The LFL Recipes dataset. 26
17 Data integration overview illustration. 28
18 Illustration showing that in the toy example SCADA and Telegram datasets nicely

align. 29
19 Data from the toy example illustrating mismatch between Telegrams and StackInfo. 30
20 The Pallet-To-Suborder (left, pink) and Suborder-To-Order (right, cyan) linking

datasets. 32
21 Results of regular expressions for retrieving suborder,order pairs. Left is the

normal variant, right is the list variant. 33
22 Illustration of longform tables. 34
23 R EDGE: Only the right edge is on top. 39
24 L EDGE: Only the left edge is on top. 39
25 BOTH X: Both edges are on top. 39
26 NONE X: None of the edges are on top. 39
27 Overview of 16 possible situations for the ON TOP relation. 40
28 Illustration of “the three columns” where any combination is a single possible situ-

ation for the NEXT TO relation. 41
29 Pallet 1 from Order 1 of the toy example (Figure 12). 42
30 Expected results after running Query 10. 43
31 Expected results after running Query 11. 43
32 Expected results after running Query 12. 44
33 Expected results after running Query 13. 44
34 Expected results after running Query 16, generated by Script 9. 45
35 Expected results after running Query 15, generated by Script 8. 46
36 Actual results after running Query 15, generated by Script 8. 47
37 Illustration of the three situations visible in Bloom for the original dataset. 47
38 Illustration of the data quality issue. 48

54 Knowledge Graphs for Improving Robot Operations in Logistics

LIST OF TABLES LIST OF TABLES

List of Tables

1 Toy example of the SCADA dataset after transformation. 19
2 Subset of 3 out of 21 lines of the toy example (Table 9) of the Telegram dataset

after transformation. 21
3 Toy example of the Telegram dataset after transformation. 22
4 Toy example of the StackInfo dataset after transformation, omitting various fields. 23
5 LFL Recipes dataset for the toy example. 27
6 Part of the cases.csv file corresponding with the first pallet of the toy example. . 42
7 Part of the pallets.csv file corresponding with the first pallet of the toy example. 42
8 The SCADA dataset as extracted from the system - data has been anonymised. . . 61
9 Toy example of the Telegram dataset after transformation. 62

Knowledge Graphs for Improving Robot Operations in Logistics 55

LIST OF CODEBLOCKS, SCRIPTS, AND QUERIESLIST OF CODEBLOCKS, SCRIPTS, AND QUERIES

List of Codeblocks, Scripts, and Queries

1 Cell from Jupyter notebook implementing grouping of Telegrams. 31
2 Example of raw exported data for Pallet-To-Suborder linking dataset. 32
3 Regular expression for suborder,order pair: normal variant. 33
4 Regular expression for suborder,order pair: list variant. 33
5 Script to check assumption that Telegrams contain enough information for STO

errors. 64
6 Anonymised version of the C# script to preprocess LFL .zip files, using Vander-

lande tooling. 68
7 Script to match LFL data to StackInfo data. Used for joining all datasets together. 69
8 Query generator for all possible situations encoding the ON TOP relation. 73
9 Query generator for all possible situations encoding the NEXT TO relation. 76
10 Cypher query for Item node. 78
11 Cypher query for Pallet node. 78
12 Cypher query for ON relation. 78
13 Cypher query for PLACED BEFORE relation. 79
14 Cypher query for set STO property. 79
15 Resulting Cypher query for the ON TOP OF relation. 89
16 Resulting Cypher query for the NEXT TO relation. 127

56 Knowledge Graphs for Improving Robot Operations in Logistics

REFERENCES REFERENCES

References

[1] “Company profile: About vanderlande - vanderlande industries,” Jan 2022. [Online].
Available: https://www.vanderlande.com/about-vanderlande/company-profile/ 1

[2] “Warehousing evolutions: Storepick,” Mar 2022. [Online]. Available: https://www.
vanderlande.com/evolutions/storepick/ 1

[3] P. C. Kanellakis, “Elements of relational database theory,” 1939. 4

[4] R. Angles, “The property graph database model,” in Proceedings of the 12th Alberto
Mendelzon International Workshop on Foundations of Data Management, Cali, Colombia,
May 21-25, 2018, ser. CEUR Workshop Proceedings, D. Olteanu and B. Poblete, Eds., vol.
2100. CEUR-WS.org, 2018. [Online]. Available: http://ceur-ws.org/Vol-2100/paper26.pdf
4

[5] E. F. Codd, “Data models in database management,” in Proceedings of the 1980 workshop
on Data abstraction, databases and conceptual modeling -. ACM Press, 1980. [Online].
Available: https://doi.org/10.1145/800227.806891 4

[6] M. A. Rodriguez and P. Neubauer, “Constructions from dots and lines,” 2010. [Online].
Available: https://arxiv.org/abs/1006.2361 4, 5

[7] neo4j, “Graph model - properties,” 2022. [Online]. Available: https://neo4j.com/docs/
getting-started/current/data-modeling/guide-data-modeling/ 4, 54

[8] “The neo4j cypher manual v4.4 - neo4j cypher manual,” 2022. [Online]. Available:
https://neo4j.com/docs/cypher-manual/4.4/ 5

[9] “Graph database use cases & solutions: Where to use a graph database,” 2022. [Online].
Available: https://neo4j.com/use-cases/ 5

[10] “Supply chain graph database use cases: Data management & visualization,” 2022. [Online].
Available: https://neo4j.com/use-cases/supply-chain-management/ 5

[11] “Graphs in life sciences — graph data science for life sciences — neo4j,” 2022. [Online].
Available: https://neo4j.com/use-cases/life-sciences/ 5

[12] “Social network graph use cases — social media graph database — neo4j,” 2022. [Online].
Available: https://neo4j.com/use-cases/social-network/ 5

[13] D. Fahland, “Process mining over multiple behavioral dimensions with event knowledge
graphs,” in Lecture Notes in Business Information Processing. Springer International Pub-
lishing, 2022, pp. 274–319. [Online]. Available: https://doi.org/10.1007/978-3-031-08848-3 9
5, 9, 52

[14] B. Kan, W. Zhu, G. Liu, X. Chen, D. Shi, and W. Yu, “Topology Modeling and
Analysis of a Power Grid Network Using a Graph Database,” International Journal of
Computational Intelligence Systems, vol. 10, no. 1, pp. 1355–1363, Sep. 2017. [Online].
Available: https://www.atlantis-press.com/journals/ijcis/25883598 5

[15] P. E. Nalwoga Lutu, “Using Twitter Mentions and a Graph Database to Analyse Social
Network Centrality,” in 2019 6th International Conference on Soft Computing & Machine
Intelligence (ISCMI). Johannesburg, South Africa: IEEE, Nov. 2019, pp. 155–159. [Online].
Available: https://ieeexplore.ieee.org/document/9004313/ 5

[16] L. Diederichsen, K.-K. R. Choo, and N.-A. Le-Khac, “A graph database-based approach to
analyze network log files,” in Network and System Security, J. K. Liu and X. Huang, Eds.
Cham: Springer International Publishing, 2019, pp. 53–73. 5

Knowledge Graphs for Improving Robot Operations in Logistics 57

https://www.vanderlande.com/about-vanderlande/company-profile/
https://www.vanderlande.com/evolutions/storepick/
https://www.vanderlande.com/evolutions/storepick/
http://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.1145/800227.806891
https://arxiv.org/abs/1006.2361
https://neo4j.com/docs/getting-started/current/data-modeling/guide-data-modeling/
https://neo4j.com/docs/getting-started/current/data-modeling/guide-data-modeling/
https://neo4j.com/docs/cypher-manual/4.4/
https://neo4j.com/use-cases/
https://neo4j.com/use-cases/supply-chain-management/
https://neo4j.com/use-cases/life-sciences/
https://neo4j.com/use-cases/social-network/
https://doi.org/10.1007/978-3-031-08848-3_9
https://www.atlantis-press.com/journals/ijcis/25883598
https://ieeexplore.ieee.org/document/9004313/

REFERENCES REFERENCES

[17] R. kumar Kaliyar, “Graph databases: A survey,” in International Conference on Computing,
Communication & Automation. Greater Noida, India: IEEE, May 2015, pp. 785–790.
[Online]. Available: http://ieeexplore.ieee.org/document/7148480/ 5

[18] “The Best Techniques for Data Integration in 2021.” [Online]. Available: https:
//www.matillion.com/resources/blog/the-best-techniques-for-data-integration-in-2021 5

[19] “What is Data Integration? The Ultimate Guide.” [Online]. Available: https:
//www.matillion.com/what-is-data-integration-the-ultimate-guide/ 5

[20] “5 Data Integration Methods and Strategies.” [Online]. Available: https://www.talend.com/
resources/data-integration-methods/ 5

[21] H. Lund, “Most common types of data integration methods.” [Online]. Available:
https://www.rapidionline.com/blog/most-common-types-of-data-integration-methods 5

[22] N. Fatima, “Common Data Integration Techniques and Technologies Explained,” Sep. 2019.
[Online]. Available: https://www.astera.com/type/blog/data-integration-techniques/ 5

[23] “What is Data Integration: Popular Methods And Applications,” May 2021. [Online].
Available: https://www.simplilearn.com/what-is-data-integration-article 5

[24] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel, “Context interchange,” ACM
Transactions on Information Systems, vol. 17, no. 3, pp. 270–293, Jul. 1999. [Online].
Available: https://doi.org/10.1145/314516.314520 6

[25] M. Lenzerini, “Data integration: a theoretical perspective,” in Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems - PODS
'02. ACM Press, 2002. [Online]. Available: https://doi.org/10.1145/543613.543644 6

[26] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: The teenage years.” 01 2006,
pp. 9–16. 6

[27] A. Doan, A. Halevy, and Z. Ives, Principles of data integration. Elsevier, 2012. 6

[28] P. Ziegler and K. R. Dittrich, “Data integration — problems, approaches, and perspectives,”
in Conceptual Modelling in Information Systems Engineering. Springer Berlin Heidelberg,
pp. 39–58. [Online]. Available: https://doi.org/10.1007/978-3-540-72677-7 3 6

[29] D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati, “Data Integration in
DataWarehousing,” International Journal of Cooperative Information Systems, vol. 10, no. 03,
pp. 237–271, Sep. 2001. [Online]. Available: https://doi.org/10.1142/s0218843001000345 6

[30] L. M. Haas, E. T. Lin, and M. A. Roth, “Data integration through database
federation,” IBM Systems Journal, vol. 41, no. 4, pp. 578–596, 2002. [Online]. Available:
https://doi.org/10.1147/sj.414.0578 6

[31] S. Sharma and R. Jain, “Modeling ETL process for data warehouse: An exploratory
study,” in 2014 Fourth International Conference on Advanced Computing & Communication
Technologies. IEEE, Feb. 2014. [Online]. Available: https://doi.org/10.1109/acct.2014.100
6

[32] R. Wijaya and B. Pudjoatmodjo, “An overview and implementation of extraction-
transformation-loading (ETL) process in data warehouse (case study: Department of
agriculture),” in 2015 3rd International Conference on Information and Communication
Technology (ICoICT). IEEE, May 2015. [Online]. Available: https://doi.org/10.1109/icoict.
2015.7231399 6

[33] “Definition of TRIBOLOGY.” [Online]. Available: https://www.merriam-webster.com/
dictionary/tribology 7

58 Knowledge Graphs for Improving Robot Operations in Logistics

http://ieeexplore.ieee.org/document/7148480/
https://www.matillion.com/resources/blog/the-best-techniques-for-data-integration-in-2021
https://www.matillion.com/resources/blog/the-best-techniques-for-data-integration-in-2021
https://www.matillion.com/what-is-data-integration-the-ultimate-guide/
https://www.matillion.com/what-is-data-integration-the-ultimate-guide/
https://www.talend.com/resources/data-integration-methods/
https://www.talend.com/resources/data-integration-methods/
https://www.rapidionline.com/blog/most-common-types-of-data-integration-methods
https://www.astera.com/type/blog/data-integration-techniques/
https://www.simplilearn.com/what-is-data-integration-article
https://doi.org/10.1145/314516.314520
https://doi.org/10.1145/543613.543644
https://doi.org/10.1007/978-3-540-72677-7_3
https://doi.org/10.1142/s0218843001000345
https://doi.org/10.1147/sj.414.0578
https://doi.org/10.1109/acct.2014.100
https://doi.org/10.1109/icoict.2015.7231399
https://doi.org/10.1109/icoict.2015.7231399
https://www.merriam-webster.com/dictionary/tribology
https://www.merriam-webster.com/dictionary/tribology

REFERENCES REFERENCES

[34] “Introduction to Stress and Equations of Motion.” [Online]. Available: https://www.comsol.
com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202 7

[35] “Material Fatigue Definition.” [Online]. Available: https://www.comsol.com/multiphysics/
material-fatigue 7

[36] S. Kakani, Material science. New Age International (P) Ltd., Publishers, 2004. 7

[37] K. M. Blache, “Where do reliability engineers come from?” Nov 2013. [Online]. Available:
https://reliabilityweb.com/articles/entry/where do reliability engineers come from 7

[38] K. K. Aggarwal, Reliability Engineering. Springer Netherlands, 1993. [Online]. Available:
https://doi.org/10.1007/978-94-011-1928-3 7

[39] P. D. T. O'Connor and A. Kleyner, Practical Reliability Engineering. Wiley, Nov. 2011.
[Online]. Available: https://doi.org/10.1002/9781119961260 7

[40] A. Birolini, Reliability Engineering. Springer Berlin Heidelberg, 2004. [Online]. Available:
https://doi.org/10.1007/978-3-662-05409-3 7

[41] E. Zio, “Reliability engineering: Old problems and new challenges,” Reliability Engineering
& System Safety, vol. 94, no. 2, pp. 125–141, Feb. 2009. [Online]. Available:
https://doi.org/10.1016/j.ress.2008.06.002 7

[42] A. H. Tai, W.-K. Ching, and L. Chan, “Detection of machine failure: Hidden markov model
approach,” Computers & Industrial Engineering, vol. 57, no. 2, pp. 608–619, Sep. 2009.
[Online]. Available: https://doi.org/10.1016/j.cie.2008.09.028 7

[43] S. R. Eddy, “What is a hidden markov model?” Nature biotechnology, vol. 22, no. 10, pp.
1315–1316, 2004. 7

[44] B. Roylance, “Machine failure and its avoidance - tribology's contribution to
effective maintenance of critical machinery,” in Wear - Materials, Mechanisms and
Practice. John Wiley & Sons Ltd, Sep. 2014, pp. 425–452. [Online]. Available:
https://doi.org/10.1002/9780470017029.ch16 7

[45] M. A. Costa, B. Wullt, M. Norrlöf, and S. Gunnarsson, “Failure detection
in robotic arms using statistical modeling, machine learning and hybrid gradient
boosting,” Measurement, vol. 146, pp. 425–436, Nov. 2019. [Online]. Available:
https://doi.org/10.1016/j.measurement.2019.06.039 7

[46] M. Riazi, O. Zaiane, T. Takeuchi, A. Maltais, J. Günther, and M. Lipsett, “Detecting
the onset of machine failure using anomaly detection methods,” in Big Data Analytics
and Knowledge Discovery. Springer International Publishing, 2019, pp. 3–12. [Online].
Available: https://doi.org/10.1007/978-3-030-27520-4 1 7

[47] H. Che, S. Zeng, and J. Guo, “Reliability assessment of man-machine systems
subject to mutually dependent machine degradation and human errors,” Reliability
Engineering & System Safety, vol. 190, p. 106504, Oct. 2019. [Online]. Available:
https://doi.org/10.1016/j.ress.2019.106504 8

[48] S.-Z. Yu, “Hidden semi-markov models,” Artificial intelligence, vol. 174, no. 2, pp. 215–243,
2010. 8

[49] J. Wu, “Introduction to convolutional neural networks,” National Key Lab for Novel Software
Technology. Nanjing University. China, vol. 5, no. 23, p. 495, 2017. 8

Knowledge Graphs for Improving Robot Operations in Logistics 59

https://www.comsol.com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202
https://www.comsol.com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202
https://www.comsol.com/multiphysics/material-fatigue
https://www.comsol.com/multiphysics/material-fatigue
https://reliabilityweb.com/articles/entry/where_do_reliability_engineers_come_from
https://doi.org/10.1007/978-94-011-1928-3
https://doi.org/10.1002/9781119961260
https://doi.org/10.1007/978-3-662-05409-3
https://doi.org/10.1016/j.ress.2008.06.002
https://doi.org/10.1016/j.cie.2008.09.028
https://doi.org/10.1002/9780470017029.ch16
https://doi.org/10.1016/j.measurement.2019.06.039
https://doi.org/10.1007/978-3-030-27520-4_1
https://doi.org/10.1016/j.ress.2019.106504

REFERENCES REFERENCES

[50] P. Li, X. Jia, J. Feng, F. Zhu, M. Miller, L.-Y. Chen, and J. Lee, “A
novel scalable method for machine degradation assessment using deep convolutional
neural network,” Measurement, vol. 151, p. 107106, Feb. 2020. [Online]. Available:
https://doi.org/10.1016/j.measurement.2019.107106 8

[51] K. Javed, R. Gouriveau, and N. Zerhouni, “Novel failure prognostics approach with
dynamic thresholds for machine degradation,” in IECON 2013 - 39th Annual Conference
of the IEEE Industrial Electronics Society. IEEE, Nov. 2013. [Online]. Available:
https://doi.org/10.1109/iecon.2013.6699844 8

[52] V. T. Tran, H. T. Pham, B.-S. Yang, and T. T. Nguyen, “Machine performance degradation
assessment and remaining useful life prediction using proportional hazard model and support
vector machine,” Mechanical Systems and Signal Processing, vol. 32, pp. 320–330, Oct. 2012.
[Online]. Available: https://doi.org/10.1016/j.ymssp.2012.02.015 8

[53] D. R. Cox, “Regression models and life-tables,” Journal of the Royal Statistical Society: Series
B (Methodological), vol. 34, no. 2, pp. 187–202, 1972. 8

[54] C. Gaimon and G. L. Thompson, “Optimal preventive and repair maintenance of a machine
subject to failure,” Optimal Control Applications and Methods, vol. 5, no. 1, pp. 57–67, Jan.
1984. [Online]. Available: https://doi.org/10.1002/oca.4660050105 8

[55] Z. Lu, W. Cui, and X. Han, “Integrated production and preventive maintenance scheduling
for a single machine with failure uncertainty,” Computers & Industrial Engineering, vol. 80,
pp. 236–244, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.cie.2014.12.017 8, 9

[56] W. Weibull, “A statistical theory of the strength of materials,” Proc. Royal 4cademy Engrg
Science, vol. 15, 1939. 8

[57] T. Xia, L. Xi, X. Zhou, and J. Lee, “Condition-based maintenance for intelligent
monitored series system with independent machine failure modes,” International Journal
of Production Research, vol. 51, no. 15, pp. 4585–4596, Aug. 2013. [Online]. Available:
https://doi.org/10.1080/00207543.2013.775524 8

[58] K. W. Verhaegh, “Process mining for systems with automated batching,” Master’s thesis,
Eindhoven University of Technology, 5612 AZ Eindhoven, August 2018. 9

[59] A. T. Pi, “Performance-aware conformance checking on material handling systems,” Master’s
thesis, Eindhoven University of Technology, 5612 AZ Eindhoven, July 2019. 9

[60] neo4j, “Bloom - neo4j graph data platform,” 2022. [Online]. Available: https:
//neo4j.com/product/bloom/ 9

[61] vis.js, “vis.js network documentation,” 2022. [Online]. Available: https://visjs.github.io/
vis-network/docs/network/ 9

[62] V. Chu, “Using event knowledge graphs to model multi-dimensional dynamics in a baggage
handling systme,” Master’s thesis, Eindhoven University of Technology, 5612 AZ Eindhoven,
April 2022. 9

[63] G. Halmetschlager-Funek, M. Suchi, M. Kampel, and M. Vincze, “An empirical evaluation
of ten depth cameras: Bias, precision, lateral noise, different lighting conditions
and materials, and multiple sensor setups in indoor environments,” IEEE Robotics
& Automation Magazine, vol. 26, no. 1, pp. 67–77, Mar. 2019. [Online]. Available:
https://doi.org/10.1109/mra.2018.2852795 49

[64] R. Rao, “Stereo and 3d vision,” University Lecture, 2009. [Online]. Available:
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf 49

60 Knowledge Graphs for Improving Robot Operations in Logistics

https://doi.org/10.1016/j.measurement.2019.107106
https://doi.org/10.1109/iecon.2013.6699844
https://doi.org/10.1016/j.ymssp.2012.02.015
https://doi.org/10.1002/oca.4660050105
https://doi.org/10.1016/j.cie.2014.12.017
https://doi.org/10.1080/00207543.2013.775524
https://neo4j.com/product/bloom/
https://neo4j.com/product/bloom/
https://visjs.github.io/vis-network/docs/network/
https://visjs.github.io/vis-network/docs/network/
https://doi.org/10.1109/mra.2018.2852795
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect16.pdf

A APPENDICES

A Appendices

A.1 Dataset Tables

Start time Error ID Error Part Duration
(within
window)

End time
(within
window)

Error
Type

2021-12-10
11:59:54.677

88.8-Some Error
Message Here

8888.88.88 No end
time within
search win-
dow

ABC

2021-12-10
11:59:51.853

88.8-Some Error
Message Here

8888.88.88 No end
time within
search win-
dow

DEF

2021-12-10
11:57:04.373

88.8-Some Error
Message Here

8888.88.88 No end
time within
search win-
dow

GHI

2021-12-10
11:54:57.767

88.8-Some Error
Message Here

8888.88.88 00:02:36.813 2021-12-10
11:57:34.580

JK

2021-12-10
11:54:57.703

88.8-Some Error
Message Here

8888.88.88 00:02:42.874 2021-12-10
11:57:40.577

LM

2021-12-10
11:54:55.063

88.8-Some Error
Message Here

8888.88.88 00:00:01.004 2021-12-10
11:54:56.067

NOP

Table 8: The SCADA dataset as extracted from the system - data has been anonymised.

Knowledge Graphs for Improving Robot Operations in Logistics 61

A.2 Data Model A APPENDICES

time error part blocked
place
position

blocked
flight
path

blocked
lift
shaft

missing
stack
surface

pallet id

2021-12-10
00:58:47.696+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:40.404+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:34.512+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:31.824+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:22.814+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:18.890+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:12.890+0000

1014.56.82 FALSE FALSE TRUE FALSE pallet3

2021-12-10
00:58:12.890+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:12.890+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:12.890+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet3

2021-12-10
00:58:05.452+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet1

2021-12-10
00:57:58.937+0000

1024.56.82 FALSE FALSE FALSE FALSE pallet2

2021-12-10
00:57:51.144+0000

1024.56.82 FALSE FALSE FALSE FALSE pallet2

2021-12-10
00:57:47.254+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet1

2021-12-10
00:57:40.698+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet1

2021-12-10
00:57:35.006+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet1

2021-12-10
00:57:30.036+0000

1024.56.82 FALSE FALSE FALSE FALSE pallet2

2021-12-10
00:57:24.423+0000

1024.56.82 FALSE FALSE FALSE FALSE pallet2

2021-12-10
00:57:18.057+0000

1014.56.82 FALSE FALSE FALSE FALSE pallet1

2021-12-10
00:56:52.816+0000

1014.56.82 FALSE FALSE TRUE FALSE pallet1

2021-12-10
00:56:52.816+0000

1024.56.82 TRUE FALSE FALSE FALSE pallet2

Table 9: Toy example of the Telegram dataset after transformation.

A.2 Data Model

Based on the four hypotheses, and on further implementation details listed in Section 6.2, we need
following nodes and relations in the graph.

Nodes:

62 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

i:Item {

placed{XYZ}{1234}: Integer,

expected{XYZ}{1234}: Integer,

offCenterX: Integer,

offCenterY: Integer,

stacking_method: List<String>,

rightmost_point: Integer,

leftmost_point: Integer,

lowest_point: Integer,

highest_point: Integer,

frontmost_point: Integer,

backmost_point: Integer,

[... properties from Teaching that are deemed interesting]

}

p:Pallet {

width: Integer

length: Integer

placement: Point2D

[pallet properties that are deemed interesting]

}

Relations:

r:ON_TOP_OF {

reason: String

gap: Integer

}

r:NEXT_TO {

reason: String

}

r:OVERHANG {

amount: Integer,

reason: String

}

A.3 Scripts

1 from math import floor

2 from math import ceil

3

4 # Ensure they're sorted by time

5 sto_scada_df = sto_scada_df.sort_values(by="start_time", ignore_index=True)

6 telegram_df = telegram_df.sort_values(by="time", ignore_index=True)

7

8 assumptions_hold = []

9 count = 0

10 max_count = 100

11 for idx, entry in sto_scada_df.iterrows():

12 count = count + 1

13 # Grab the bounds on time, with 10 seconds both way

14 l = floor(entry["start_time"]) - (60)

Knowledge Graphs for Improving Robot Operations in Logistics 63

A.3 Scripts A APPENDICES

15

16 if type(entry["end_time"]) == type(0.0):

17 u = ceil(entry["end_time"]) + (60)

18 else:

19 u = l + (10 * 24 * 60 * 60)

20

21

22 # Scada mentions that the palletizer is this one

23 wanted = entry["palletizer"]

24

25 # Reasons why there's an STO

26 reasons = []

27 if entry["blocked_lift_shaft"]:

28 reasons.append("blocked_lift_shaft")

29

30 if entry["missing_stack_surface"]:

31 reasons.append("missing_stack_surface")

32

33 if entry["blocked_place_position"]:

34 reasons.append("blocked_place_position")

35

36 if entry["blocked_flight_path"]:

37 reasons.append("blocked_flight_path")

38

39 # Check if said palletizer is in the telegrams filtered on times

40 test_me = telegram_df[telegram_df["time"] > l]

41 test_me = test_me[test_me["time"] < u]

42

43 # Filter on reasons

44 for reason in reasons:

45 if reason:

46 test_me = test_me[test_me[reason]]

47

48 assumptions_hold.insert(idx, wanted in test_me['palletizer'].values)

49 if count > max_count:

50 break

51

52

53 print(False in assumptions_hold)

Script 5: Script to check assumption that Telegrams contain enough information for STO errors.

1 <Query Kind="Program">

2 // [relative dependencies omitted]

3 <NuGetReference>CsvHelper</NuGetReference>

4 <Namespace>CsvHelper</Namespace>

5 <Namespace>CsvHelper.Configuration</Namespace>

6 <Namespace>CsvHelper.Configuration.Attributes</Namespace>

7 <Namespace>CsvHelper.Expressions</Namespace>

8 <Namespace>CsvHelper.TypeConversion</Namespace>

9 <Namespace>System.Globalization</Namespace>

10 // [Vanderlande namespaces omitted]

11 <RuntimeVersion>3.1</RuntimeVersion>

12 </Query>

13

64 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

14 /// <summary>

15 /// Main processing function.

16 /// Grabs relevant information from LFL files, and then creates a CSV from it.

17 /// </summary>

18 public static void Main() {

19 // Keep track of running time.

20 System.Diagnostics.Stopwatch timer = System.Diagnostics.Stopwatch.StartNew();

21

22 // Path to LFL ZIP files.

23 string BASE_PATH = @"C:\Users\daniel\Documents_Project_datasets\LFL";

24

25 // Loop through all folders, each containing at most 50 ZIP files

26 int NUMBER_OF_FOLDERS = 55;

27 for (int i = 1; i < NUMBER_OF_FOLDERS + 1; i++) {

28 // Time Reading the files

29 var T = System.Diagnostics.Stopwatch.StartNew();

30 string folder = Path.Join(BASE_PATH, i.ToString());

31 List<CSVItem> items = ProcessFolder(folder);

32 T.Stop();

33 Console.WriteLine("Reading folder {0} took {1} ms", i, T.ElapsedMilliseconds);

34

35 // Time writing CSV

36 T = System.Diagnostics.Stopwatch.StartNew();

37 string outFile = Path.Join(BASE_PATH, "_processed", i.ToString() + ".csv");

38 toCSV(outFile, items); // assumes '_processed' folder already exists

39 T.Stop();

40 Console.WriteLine("Writing {0} took {1} ms", outFile, T.ElapsedMilliseconds);

41 }

42 // Write single line containing all time.

43 timer.Stop();

44 Console.WriteLine("Everything took {0} ms!", timer.ElapsedMilliseconds);

45 }

46

47 /// <summary>

48 /// This is the data that we extract from the recipes.

49 /// Most fields are straightforward. Comments added for clarity.

50 /// </summary>

51 class CSVItem {

52 // The order itself

53 public string OrderId { get; set; }

54 public string RecipeId { get; set; } // Linking with stackinfo is done on RecipeId.

55 // Stack KPIs

56 public int StackHeight { get; set; }

57 public long StackWeight { get; set; }

58 public long StackVolume { get; set; }

59 public int NrCasesInStack { get; set; }

60 public double StackGroupCoherence { get; set; }

61 public double StackArticleCoherence { get; set; }

62 public double StackFillrate { get; set; }

63 // Per Case fields

64 public string CaseId { get; set; }

65 public int SequenceId { get; set; }

66 public int CompletedHeigth { get; set; }

67 public string StackingMethod { get; set; }

68 }

69

Knowledge Graphs for Improving Robot Operations in Logistics 65

A.3 Scripts A APPENDICES

70 /// <summary>

71 /// Processes a folder with LFL zip files.

72 /// </summary>

73 static List<CSVItem> ProcessFolder(string RECIPES) {

74 // Read ZIP files in parallel

75 // There is NO GUARANTEE on the order!

76 List<OrderData> orders = MessageFiles.ListFiles(RECIPES)

77 .AsParallel()

78 .Select(f => f.Read())

79 .ToList();

80

81 // Sort by name: We do this for consistency.

82 // If we don't sort, runs are subject to race conditions due to the parallel loading.

83 // We DO NOT want to do this for the large dataset,

84 // since it'll take a lot of time (sorting is O(n log (n))).

85

86 /*

87 orders.Sort((order1, order2) => {

88 return order1.Name.CompareTo(order2.Name);

89 });

90 */

91

92 // Create a collection of items that we want to write to CSV

93 List<CSVItem> data = new List<CSVItem>();

94

95 // Loop through all orders

96 foreach (OrderData order in orders) {

97 // This should be the order ID.

98 string orderId = order.Order.OrderId;

99

100 // Create mapping from RecipeId to its KPIs.

101 Dictionary<string, IStackKpi> recipeToKPI = getMapFromRecipeToKPI(order);

102

103 // Loop through all recipes in the order

104 foreach (StackingRecipe recipe in order.Recipe.StackingRecipes) {

105 // Grap recipe ID: This is what we need to match with stackinfo CSVs.

106 string recipeId = recipe.IdString;

107 // Grab KPIs from mapping

108 IStackKpi kpi = recipeToKPI[recipeId];

109

110 int StackHeight = kpi.Height;

111 long StackWeight = kpi.Weight;

112 long StackVolume = kpi.Volume;

113 int NrCases = kpi.NrCases;

114 double GroupCoherence = kpi.GroupCoherence;

115 double ArticleCoherence = kpi.ArticleCoherence;

116 double Fillrate = kpi.Fillrate;

117

118 // Map each caseID to its related stacking method

119 Dictionary<Tuple<string, Vector3D>, string> toAction = convertDictionary(

120 RecipeActions.GetStackerPlacementDetails(order.OrderResult, recipe)

121);

122

123 // Loop over all stacking sequence groups

124 foreach (var sequenceGroup in recipe.SequenceGroups) {

125 // Extract the completed height; this is 'stackFloorHeightMm' in stackinfo CSVs.

66 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

126 int completedHeight = sequenceGroup.CompletedHeight;

127 int sequenceGroupId = sequenceGroup.Id;

128

129 // Loop through each step, and grab the case IDs and related stacking method.

130 foreach (var stackingStep in sequenceGroup.StackingSteps) {

131 // Define the variables here

132 string caseId;

133 string action;

134

135 // Set variables accordingly

136 if (stackingStep.IsSlipsheetStep) {

137 // [REDACTED COMMENT]

138 caseId = stackingStep.Position.ItemId;

139 action = null;

140 } else if (stackingStep.IsProductStep) {

141 // Happy flow

142 caseId = stackingStep.Position.ItemId;

143 action = toAction[new(caseId, stackingStep.Position.Position)];

144 } else {

145 // This should never happen

146 caseId = null;

147 action = null;

148 }

149

150 // Add a new item to the collections of items to write to CSV

151 data.Add(new CSVItem {

152 OrderId = orderId,

153 RecipeId = recipeId,

154 StackHeight = StackHeight,

155 StackWeight = StackWeight,

156 StackVolume = StackVolume,

157 NrCasesInStack = NrCases,

158 StackGroupCoherence = GroupCoherence,

159 StackArticleCoherence = ArticleCoherence,

160 StackFillrate = Fillrate,

161 CaseId = caseId,

162 SequenceId = sequenceGroupId,

163 CompletedHeigth = completedHeight,

164 StackingMethod = action,

165 });

166 }

167 }

168 }

169 }

170

171 // Return the list of items

172 return data;

173 }

174

175 /// <summary>

176 /// Writes a list of CSVItems to a CSV file.

177 /// </summary>

178 static void toCSV(string path, List<CSVItem> data) {

179 using (var writer = new StreamWriter(path))

180 using (var csv = new CsvWriter(writer, CultureInfo.InvariantCulture)) {

181 csv.WriteRecords(data);

Knowledge Graphs for Improving Robot Operations in Logistics 67

A.3 Scripts A APPENDICES

182 }

183 }

184

185 /// <summary>

186 /// Creates a dictionary from a guid (~unique case ID in LFL) to the action it was packed with.

187 /// </summary>

188 static Dictionary<Tuple<string, Vector3D>, string> convertDictionary(

189 IDictionary<ProductPosition, StackerPlacementDetails> mapping

190) {

191 // Create empty dictionary

192 Dictionary<Tuple<string, Vector3D>, string> dict

193 = new Dictionary<Tuple<string, Vector3D>, string>();

194

195 // Loop through each item in the mapping as returned by LFL, retrieve wanted items,

196 // and add to the mapping.

197 foreach(var item in mapping) {

198 string caseId = item.Key.ItemId;

199 Vector3D pos = item.Key.Position;

200 string action = item.Value.Action;

201 dict.Add(new (caseId, pos), action);

202 }

203

204 return dict;

205 }

206

207 /// <summary>

208 /// Creates a dictionary from a recipe ID to its KPIs and returns it.

209 /// </summary>

210 static Dictionary<string, IStackKpi> getMapFromRecipeToKPI(OrderData order) {

211 // Create empty dictionary

212 Dictionary<string, IStackKpi> recipeToKPI = new Dictionary<string, IStackKpi>();

213

214 // Loop through KPIs, and add dictionary entry

215 foreach (IStackKpi kpi in order.OrderResult.OrderKpi.StackKpis) {

216 recipeToKPI.Add(kpi.RecipeId, kpi);

217 }

218

219 return recipeToKPI;

220 }

Script 6: Anonymised version of the C# script to preprocess LFL .zip files, using Vanderlande
tooling.

1 def lfl_match(recipe):

2 """

3 Function that matches an LFL recipe to a StackInfo CSV, which takes as input

4 "longform" dataframes as explained in the notebook. It should only be run after

5 two sanity checks, which are automatically done.

6

7 Assumes that the set of cases and number of items is identical!

8 """

9 # Grab the ID from this row

10 recipe_id = recipe.index

11

12 # Keep track of the matches as list

68 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

13 matches = []

14 matches_okay = []

15

16 # Initialise dictionary with False.

17 # This will keep track of all matched 'palletiseSeqNr' on a recipe basis.

18 matched = defaultdict(lambda: False)

19

20 # Loop through LFL sequence groups

21 for (lflSequenceGroup, lflCase) in zip(recipe["SequenceId"], recipe["CaseId"]):

22 # Boolean for verifying single case

23 foundMatch = False

24

25 # Loop through stackinfo

26 for (siSequenceNumber, siCase) in zip(recipe["palletiseSeqNr"], recipe["caseId"]):

27 # Skip load carrier

28 if pd.isnull(siCase):

29 continue

30 # Skip already used cases

31 elif matched[siSequenceNumber]:

32 continue

33 # Skip siCase if we can't match

34 elif lflCase != siCase:

35 continue

36 # Same case for an unmatched item: MATCH!

37 else:

38 foundMatch = True

39 matched[siSequenceNumber] = True

40 break

41

42 # We can match; add tuple

43 if foundMatch:

44 # Tuple: lflSequenceGroup, siSequenceNumber, caseID

45 matches.append((lflSequenceGroup, siSequenceNumber, lflCase))

46 matches_okay.append(True)

47 else:

48 # Not possible to match this particular one, so set to False

49 matches.append((None, None, None))

50 matches_okay.append(False)

Script 7: Script to match LFL data to StackInfo data. Used for joining all datasets together.

1 import os

2

3 # Script that produces all queries for NEXT_TO.

4 if __name__ == "__main__":

5 # Where to output files

6 RELATION_PATH = r"/mnt/c/Users/daniel/Documents/_Project/neo4j/queries/generated/"

7 # Whether or not to output queries for each situation

8 SINGLE_FILE = True

9

10 X = ["R_EDGE", "BOTH_X", "L_EDGE", "NONE_X"] # 4 situations

11 Y = ["B_EDGE", "BOTH_Y", "T_EDGE", "NONE_Y"] # 4 situations

12

13 # Encodes when (a:Item) is KEY w.r.t (b:Item) in a check to be executed in Cypher

14 mp = {

Knowledge Graphs for Improving Robot Operations in Logistics 69

A.3 Scripts A APPENDICES

15 # X

16 "R_EDGE": [

17 "a.leftmost_point < b.leftmost_point",

18 "a.rightmost_point <= b.rightmost_point", # equal to right

19 "a.rightmost_point > b.leftmost_point"

20],

21 "BOTH_X": [

22 "a.leftmost_point >= b.leftmost_point", # equal to left

23 "a.rightmost_point <= b.rightmost_point" # equal to right

24],

25 "L_EDGE": [

26 "a.leftmost_point >= b.leftmost_point", # equal to left

27 "a.rightmost_point > b.rightmost_point",

28 "a.leftmost_point < b.rightmost_point"

29],

30 "NONE_X": [

31 "a.leftmost_point < b.leftmost_point",

32 "a.rightmost_point > b.rightmost_point"

33],

34 # Y

35 "B_EDGE": [

36 # equal to front (bottom)

37 "a.frontmost_point >= b.frontmost_point",

38 "a.backmost_point > b.backmost_point",

39 "a.frontmost_point < b.backmost_point"

40],

41 "BOTH_Y": [

42 # equal to front (bottom)

43 "a.frontmost_point >= b.frontmost_point",

44 "a.backmost_point < b.backmost_point" # equal to back (top)

45],

46 "T_EDGE": [

47 "a.frontmost_point < b.frontmost_point",

48 "a.backmost_point <= b.backmost_point", # equal to back (top)

49 "a.backmost_point > b.frontmost_point"

50],

51 "NONE_Y": [

52 "a.frontmost_point < b.frontmost_point",

53 "a.backmost_point > b.backmost_point"

54]

55 }

56

57 # Generate cypher queries

58 all_lines = [

59 "// Relation: ON_TOP.",

60 "// Contains 16 sub-queries to create.",

61 "\n\n\n"

62]

63 all_rels = []

64 all_filename = "relation_ON_TOP_COMPLETE.cypher"

65 for x in X:

66 for y in Y:

67 rel = f"{x}_{y}_ABOVE"

68 all_rels.append(rel)

69

70 filename = f"relation_{rel}.cypher"

70 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

71 # Relation: creation

72 lines = [

73 f"// Relation: {rel}",

74 "MATCH",

75 " (a:Item),",

76 " (b:Item)",

77 "WHERE",

78 " id(a) <> id(b)",

79 " AND a.pallet_id = b.pallet_id",

80 # " AND a.lowest_point >= b.highest_point" # Z-axis check

81 " AND a.lowest_point + 59 > b.highest_point" # Z-axis check + constant variable

for max case height (60)↪→

82]

83 for reason in mp[x]:

84 lines.append(f" AND {reason}")

85 for reason in mp[y]:

86 lines.append(f" AND {reason}")

87 lines += [

88 "MERGE",

89 f" (a)-[r:{rel}]->(b);"

90]

91

92 # Whitelines

93 lines.append("\n")

94

95 # Relation: deletion

96 lines += [

97 f"// Relation: {rel} remove extra",

98 "MATCH",

99 f" (a:Item)-[r:{rel}]->(b:Item)-[t:{rel}]->(c:Item),",

100 f" (a:Item)-[q:{rel}]->(c:Item)",

101 "WHERE",

102 " id(a) <> id(b)",

103 " AND id(a) <> id(c)",

104 " AND id(b) <> id(c)",

105 "DELETE",

106 " q;"

107]

108

109 # Write to single file

110 if SINGLE_FILE:

111 with open(os.path.join(RELATION_PATH, filename), 'w') as f:

112 print(f"Writing file: '{filename}'...")

113 f.write('\n'.join(lines))

114

115 # Append to big list of lines

116 all_lines += lines

117

118 # Create ON TOP relation with reason property

119 create_on_top = ["// Relation: ON_TOP { reason }"]

120 for rel in all_rels:

121 create_on_top += [

122 "MATCH",

123 f" (a:Item) -[:{rel}]->(b:Item)",

124 "WHERE",

125 " id(a) <> id(b)",

Knowledge Graphs for Improving Robot Operations in Logistics 71

A.3 Scripts A APPENDICES

126 "CREATE",

127 " (a)-[:ON_TOP {reason: " + '"' + rel + '"' + "}]->(b);\n"

128]

129

130 # Write to single file

131 if SINGLE_FILE:

132 with open(os.path.join(RELATION_PATH, r"relation_ON_TOP-reason.cypher"), 'w') as f:

133 print(f"Writing file: 'relation_ON_TOP-reason.cypher'...")

134 f.write('\n'.join(create_on_top))

135

136 # Add gap property

137 add_gap = [

138 "// Relation: ON_TOP { gap }",

139 "MATCH",

140 " (a:Item) -[r:ON_TOP]-> (b:Item)",

141 "WITH",

142 " r,"

143 " a.lowest_point - b.highest_point AS gap",

144 "SET",

145 " r.gap = gap;"

146]

147

148 # Write to single file

149 if SINGLE_FILE:

150 with open(os.path.join(RELATION_PATH, r"relation_ON_TOP-gap.cypher"), 'w') as f:

151 print(f"Writing file: 'relation_ON_TOP-gap.cypher'...")

152 f.write('\n'.join(add_gap))

153

154 # Remove double created relations

155 remove = [

156 "// Relation: ON_TOP remove extra",

157 "MATCH",

158 " (a:Item)-[r:ON_TOP]->(b:Item)-[t:ON_TOP]->(c:Item),",

159 " (a:Item)-[q:ON_TOP]->(c:Item)",

160 "WHERE",

161 " id(a) <> id(b)",

162 " AND id(a) <> id(c)",

163 " AND id(b) <> id(c)",

164 "DELETE",

165 " q;"

166]

167

168 # Write to single file

169 if SINGLE_FILE:

170 with open(os.path.join(RELATION_PATH, r"relation_ON_TOP-remove.cypher"), 'w') as f:

171 print(f"Writing file: 'relation_ON_TOP-remove.cypher'...")

172 f.write('\n'.join(remove))

173

174 # Append to big list of lines

175 all_lines += create_on_top

176 all_lines += add_gap

177 all_lines += remove

178

179 # Write to big file

180 with open(os.path.join(RELATION_PATH, all_filename), 'w') as f:

181 print(f"Writing file: '{all_filename}'...")

72 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

182 f.write('\n'.join(all_lines))

Script 8: Query generator for all possible situations encoding the ON TOP relation.

1 import os

2

3 # Script that produces all queries for NEXT_TO.

4 if __name__ == "__main__":

5 RELATION_PATH = r"/mnt/c/Users/daniel/Documents/_Project/neo4j/queries/generated/"

6 # Whether or not to output queries for each situation

7 SINGLE_FILE = True

8

9 sides = ["L", "F", "R", "B"] # 4 edges to consider

10

11 Z = ["HIGH_Z", "LOW_Z", "BIG_Z", "SMALL_Z"] # 4 situations

12 Y = ["TOP_Y", "MID_Y", "BOT_Y", "BIG_Y"] # sides L+R

13 X = ["LEFT_X", "MID_X", "RIGHT_X", "LONG_X"] # sides F+B

14

15 # Encodes when (a:Item) is KEY w.r.t (b:Item) in a check to be executed in Cypher

16 mp = {

17 # sides

18 "L": [

19 "a.rightmost_point < b.leftmost_point",

20],

21 "F": [

22 "a.backmost_point < b.frontmost_point"

23],

24 "R": [

25 "a.leftmost_point > b.rightmost_point"

26],

27 "B": [

28 "a.frontmost_point > b.backmost_point"

29],

30

31 # XZ-plane

32 "HIGH_Z": [

33 "a.lowest_point < b.highest_point",

34 "a.lowest_point >= b.lowest_point", # equality with bot

35 "a.highest_point > b.highest_point"

36],

37 "LOW_Z": [

38 "a.lowest_point < b.lowest_point",

39 "a.highest_point > b.lowest_point",

40 "a.highest_point <= b.highest_point" # equality with top

41],

42 "BIG_Z": [

43 "a.highest_point > b.highest_point",

44 "a.lowest_point < b.lowest_point"

45],

46 "SMALL_Z": [

47 "a.highest_point <= b.highest_point", # equality with top

48 "a.lowest_point >= b.lowest_point" # equality with bot

49],

50

51 # XY-plane, L+R sides

Knowledge Graphs for Improving Robot Operations in Logistics 73

A.3 Scripts A APPENDICES

52 "TOP_Y": [

53 "a.frontmost_point < b.backmost_point",

54 "a.frontmost_point >= b.frontmost_point", # equality with front

55 "a.backmost_point > b.backmost_point"

56],

57 "MID_Y": [

58 "a.frontmost_point < b.frontmost_point",

59 "a.backmost_point > b.frontmost_point",

60 "a.backmost_point <= b.backmost_point" # equality with back

61],

62 "BOT_Y": [

63 "a.backmost_point > b.backmost_point",

64 "a.frontmost_point < b.frontmost_point"

65],

66 "BIG_Y": [

67 "a.backmost_point <= b.backmost_point", # equality with back

68 "a.frontmost_point >= b.frontmost_point" # equality with front

69],

70

71 # XY-plane, F+B sides

72 "LEFT_X": [

73 "a.leftmost_point < b.rightmost_point",

74 "a.leftmost_point >= b.leftmost_point", # equality with left

75 "a.rightmost_point > b.rightmost_point"

76],

77 "MID_X": [

78 "a.leftmost_point < b.leftmost_point",

79 "a.rightmost_point > b.leftmost_point",

80 "a.rightmost_point <= b.rightmost_point" # equality with right

81],

82 "RIGHT_X": [

83 "a.rightmost_point > b.rightmost_point",

84 "a.leftmost_point < b.leftmost_point"

85],

86 "LONG_X": [

87 "a.rightmost_point <= b.rightmost_point", # equality with right

88 "a.leftmost_point >= b.leftmost_point" # equality with left

89]

90 }

91

92 # Generate cypher queries

93 all_lines = [

94 "// Relation: NEXT_TO.",

95 "// Contains 64 sub-queries to create.",

96 " \n \n \n"

97]

98 all_rels = []

99 all_filename = "relation_NEXT_TO_COMPLETE.cypher"

100

101 for side in sides:

102 for z in Z:

103 # Decide which names to use based on L+R / F+B

104 O = Y if side == "L" or side == "R" else X

105 for o in O:

106 rel = f"{side}_{z}_{o}"

107 all_rels.append(rel)

74 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.3 Scripts

108

109 filename = f"relation_{rel}.cypher"

110 # Relation: creation

111 lines = [

112 f"// Relation: {rel}",

113 "MATCH",

114 " (a:Item),",

115 " (b:Item)",

116 "WHERE",

117 " id(a) <> id(b)",

118 " AND a.pallet_id = b.pallet_id",

119]

120 for reason in mp[side]:

121 lines.append(f" AND {reason}")

122 for reason in mp[z]:

123 lines.append(f" AND {reason}")

124 for reason in mp[o]:

125 lines.append(f" AND {reason}")

126 lines += [

127 "MERGE",

128 f" (a)-[r:{rel}]->(b);"

129]

130

131 # Whitelines

132 lines.append("\n")

133

134 # Relation: deletion

135 lines += [

136 f"// Relation: {rel} remove extra",

137 "MATCH",

138 f" (a:Item)-[r:{rel}]->(b:Item)-[t:{rel}]->(c:Item),",

139 f" (a:Item)-[q:{rel}]->(c:Item)",

140 "WHERE",

141 " id(a) <> id(b)",

142 " AND id(a) <> id(c)",

143 " AND id(b) <> id(c)",

144 "DELETE",

145 " q;"

146]

147

148 if SINGLE_FILE:

149 # Write to single file

150 with open(os.path.join(RELATION_PATH, filename), 'w') as f:

151 print(f"Writing file: '{filename}'...")

152 f.write('\n'.join(lines))

153

154 # Append to big list of lines

155 all_lines += lines

156

157 # Create NEXT_TO relation with reason property

158 create_next_to = ["// Relation: NEXT_TO { reason }"]

159 for rel in all_rels:

160 create_next_to += [

161 "MATCH",

162 f" (a:Item) -[:{rel}]->(b:Item)",

163 "WHERE",

Knowledge Graphs for Improving Robot Operations in Logistics 75

A.4 Queries A APPENDICES

164 " id(a) <> id(b)",

165 "CREATE",

166 " (a)-[:NEXT_TO {reason: " + '"' + rel + '"' + "}]->(b);",

167]

168

169 # Write to single file

170 if SINGLE_FILE:

171 with open(os.path.join(RELATION_PATH, r"relation_NEXT_TO-reason.cypher"), 'w') as f:

172 print(f"Writing file: 'relation_NEXT_TO-reason.cypher'...")

173 f.write('\n'.join(create_next_to))

174

175 """

176 This can not be done so naively. There will be (probably many) cases where this matches something

we want to keep. For now, it's a comment.↪→

177

178 # Remove double created relations

179 remove = [

180 "// Relation: NEXT_TO remove extra",

181 "MATCH",

182 " (a:Item)-[r:NEXT_TO]->(b:Item)-[t:NEXT_TO]->(c:Item),",

183 " (a:Item)-[q:NEXT_TO]->(c:Item)",

184 "WHERE",

185 " id(a) <> id(b)",

186 " AND id(a) <> id(c)",

187 " AND id(b) <> id(c)"

188 "DELETE",

189 " q;"

190]

191

192 # Write to single file

193 with open(os.path.join(RELATION_PATH, r"relation_NEXT_TO-remove.cypher"), 'w') as f:

194 print(f"Writing file: 'relation_NEXT_TO-remove.cypher'...")

195 f.write('\n'.join(remove))

196 """

197

198

199 # Append to big list of lines

200 all_lines += create_next_to

201 # all_lines += remove

202

203 # Write to big file

204 with open(os.path.join(RELATION_PATH, all_filename), 'w') as f:

205 print(f"Writing file: '{all_filename}'...")

206 f.write('\n'.join(all_lines))

Script 9: Query generator for all possible situations encoding the NEXT TO relation.

A.4 Queries

1 // Node: Item

2 :auto LOAD CSV WITH HEADERS FROM 'file:///cases.csv' AS row

3 CALL {

4 WITH row

5 CREATE (i:Item {

76 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

6 pallet_id: row.pallet_id,

7 palletiseSeqNr: toIntegerOrNull(row.palletiseSeqNr),

8 caseId: toIntegerOrNull(row.caseId),

9 stackFloorHeightMm: toIntegerOrNull(row.stackFloorHeightMm),

10 expected1: point({

11 x: toIntegerOrNull(row.expectedX1),

12 y: toIntegerOrNull(row.expectedY1),

13 z: toIntegerOrNull(row.expectedZ1)

14 }),

15 expected2: point({

16 x: toIntegerOrNull(row.expectedX2),

17 y: toIntegerOrNull(row.expectedY2),

18 z: toIntegerOrNull(row.expectedZ2)

19 }),

20 expected3: point({

21 x: toIntegerOrNull(row.expectedX3),

22 y: toIntegerOrNull(row.expectedY3),

23 z: toIntegerOrNull(row.expectedZ3)

24 }),

25 expected4: point({

26 x: toIntegerOrNull(row.expectedX4),

27 y: toIntegerOrNull(row.expectedY4),

28 z: toIntegerOrNull(row.expectedZ4)

29 }),

30 placed1: point({

31 x: toIntegerOrNull(row.placedX1),

32 y: toIntegerOrNull(row.placedY1),

33 z: toIntegerOrNull(row.placedZ1)

34 }),

35 placed2: point({

36 x: toIntegerOrNull(row.placedX2),

37 y: toIntegerOrNull(row.placedY2),

38 z: toIntegerOrNull(row.placedZ2)

39 }),

40 placed3: point({

41 x: toIntegerOrNull(row.placedX3),

42 y: toIntegerOrNull(row.placedY3),

43 z: toIntegerOrNull(row.placedZ3)

44 }),

45 placed4: point({

46 x: toIntegerOrNull(row.placedX4),

47 y: toIntegerOrNull(row.placedY4),

48 z: toIntegerOrNull(row.placedZ4)

49 }),

50 placementId: row.placementId,

51 waypoint2: point ({

52 x: toIntegerOrNull(row.waypoint2X),

53 y: toIntegerOrNull(row.waypoint2Y),

54 z: toIntegerOrNull(row.waypoint2Z)

55 }),

56 releasePosition: point({

57 x: toIntegerOrNull(row.releasePositionX),

58 y: toIntegerOrNull(row.releasePositionY),

59 z: toIntegerOrNull(row.releasePositionZ)

60 }),

61 offCenterX: toIntegerOrNull(row.offCenterX),

Knowledge Graphs for Improving Robot Operations in Logistics 77

A.4 Queries A APPENDICES

62 offCenterY: toIntegerOrNull(row.offCenterY),

63 CompletedHeigth: toIntegerOrNull(row.CompletedHeigth),

64 StackingMethod: row.StackingMethod,

65 blocked_flight_path: toBooleanOrNull(row.blocked_flight_path),

66 blocked_place_position: toBooleanOrNull(row.blocked_place_position),

67 blocked_lift_shaft: toBooleanOrNull(row.blocked_lift_shaft),

68 missing_stack_surface: toBooleanOrNull(row.missing_stack_surface),

69 leftmost_point: toIntegerOrNull(row.leftmost_point),

70 rightmost_point: toIntegerOrNull(row.rightmost_point),

71 frontmost_point: toIntegerOrNull(row.frontmost_point),

72 backmost_point: toIntegerOrNull(row.backmost_point),

73 lowest_point: toIntegerOrNull(row.lowest_point),

74 highest_point: toIntegerOrNull(row.highest_point),

75 TEACHING_LENGTH: toIntegerOrNull(row.TEACHING_LENGTH),

76 TEACHING_WIDTH: toIntegerOrNull(row.TEACHING_WIDTH),

77 TEACHING_HEIGHT: toIntegerOrNull(row.TEACHING_HEIGHT),

78 })

79 } IN TRANSACTIONS OF 250 ROWS

Cypher Query 10: Cypher query for Item node.

1 // Node: Pallet

2 :auto LOAD CSV WITH HEADERS FROM 'file:///pallets.csv' AS row

3 CALL {

4 WITH row

5 CREATE (p:Pallet {

6 pallet_id: row.pallet_id,

7 palletizer: row.palletizer,

8 suborder_id: row.suborder_id,

9 order_id: row.order_id,

10 StackHeight: toFloatOrNull(row.StackHeight),

11 StackWeight: toFloatOrNull(row.StackWeight),

12 StackVolume: toFloatOrNull(row.StackVolume),

13 NrCasesInStack: toIntegerOrNull(row.NrCasesInStack),

14 StackGroupCoherence: toFloatOrNull(row.StackGroupCoherence),

15 StackArticleCoherence: toFloatOrNull(row.StackArticleCoherence),

16 StackFillrate: toFloatOrNull(row.StackFillrate),

17 })

18 } IN TRANSACTIONS OF 250 ROWS

Cypher Query 11: Cypher query for Pallet node.

1 // Relation: ON

2 MATCH

3 (i:Item),

4 (p:Pallet)

5 WHERE

6 i.pallet_id = p.pallet_id

7 CREATE

8 (i)-[r:ON]->(p)

Cypher Query 12: Cypher query for ON relation.

78 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1 // Relation: PLACED_BEFORE

2 MATCH

3 (a:Item),

4 (b:Item)

5 WHERE

6 a.pallet_id = b.pallet_id

7 AND id(a) = id(b) - 1

8 CREATE

9 (a)-[r:PLACED_BEFORE]->(b)

Cypher Query 13: Cypher query for PLACED BEFORE relation.

1 // Set STO property on last node in path

2 MATCH

3 (a:Item)

4 OPTIONAL MATCH

5 (a)-[:PLACED_BEFORE]->(b)

6 WITH

7 a, b

8 WHERE

9 b IS NULL

10 SET

11 a.STO = True

Cypher Query 14: Cypher query for set STO property.

1 // Relation: ON_TOP.

2 // Contains 16 sub-queries to create.

3

4

5

6

7 // Relation: R_EDGE_B_EDGE_ABOVE

8 MATCH

9 (a:Item),

10 (b:Item)

11 WHERE

12 id(a) <> id(b)

13 AND a.pallet_id = b.pallet_id

14 AND a.lowest_point + 59 > b.highest_point

15 AND a.leftmost_point < b.leftmost_point

16 AND a.rightmost_point <= b.rightmost_point

17 AND a.rightmost_point > b.leftmost_point

18 AND a.frontmost_point >= b.frontmost_point

19 AND a.backmost_point > b.backmost_point

20 AND a.frontmost_point < b.backmost_point

21 MERGE

22 (a)-[r:R_EDGE_B_EDGE_ABOVE]->(b);

23

24

25 // Relation: R_EDGE_B_EDGE_ABOVE remove extra

26 MATCH

Knowledge Graphs for Improving Robot Operations in Logistics 79

A.4 Queries A APPENDICES

27 (a:Item)-[r:R_EDGE_B_EDGE_ABOVE]->(b:Item)-[t:R_EDGE_B_EDGE_ABOVE]->(c:Item),

28 (a:Item)-[q:R_EDGE_B_EDGE_ABOVE]->(c:Item)

29 WHERE

30 id(a) <> id(b)

31 AND id(a) <> id(c)

32 AND id(b) <> id(c)

33 DELETE

34 q;

35 // Relation: R_EDGE_BOTH_Y_ABOVE

36 MATCH

37 (a:Item),

38 (b:Item)

39 WHERE

40 id(a) <> id(b)

41 AND a.pallet_id = b.pallet_id

42 AND a.lowest_point + 59 > b.highest_point

43 AND a.leftmost_point < b.leftmost_point

44 AND a.rightmost_point <= b.rightmost_point

45 AND a.rightmost_point > b.leftmost_point

46 AND a.frontmost_point >= b.frontmost_point

47 AND a.backmost_point < b.backmost_point

48 MERGE

49 (a)-[r:R_EDGE_BOTH_Y_ABOVE]->(b);

50

51

52 // Relation: R_EDGE_BOTH_Y_ABOVE remove extra

53 MATCH

54 (a:Item)-[r:R_EDGE_BOTH_Y_ABOVE]->(b:Item)-[t:R_EDGE_BOTH_Y_ABOVE]->(c:Item),

55 (a:Item)-[q:R_EDGE_BOTH_Y_ABOVE]->(c:Item)

56 WHERE

57 id(a) <> id(b)

58 AND id(a) <> id(c)

59 AND id(b) <> id(c)

60 DELETE

61 q;

62 // Relation: R_EDGE_T_EDGE_ABOVE

63 MATCH

64 (a:Item),

65 (b:Item)

66 WHERE

67 id(a) <> id(b)

68 AND a.pallet_id = b.pallet_id

69 AND a.lowest_point + 59 > b.highest_point

70 AND a.leftmost_point < b.leftmost_point

71 AND a.rightmost_point <= b.rightmost_point

72 AND a.rightmost_point > b.leftmost_point

73 AND a.frontmost_point < b.frontmost_point

74 AND a.backmost_point <= b.backmost_point

75 AND a.backmost_point > b.frontmost_point

76 MERGE

77 (a)-[r:R_EDGE_T_EDGE_ABOVE]->(b);

78

79

80 // Relation: R_EDGE_T_EDGE_ABOVE remove extra

81 MATCH

82 (a:Item)-[r:R_EDGE_T_EDGE_ABOVE]->(b:Item)-[t:R_EDGE_T_EDGE_ABOVE]->(c:Item),

80 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

83 (a:Item)-[q:R_EDGE_T_EDGE_ABOVE]->(c:Item)

84 WHERE

85 id(a) <> id(b)

86 AND id(a) <> id(c)

87 AND id(b) <> id(c)

88 DELETE

89 q;

90 // Relation: R_EDGE_NONE_Y_ABOVE

91 MATCH

92 (a:Item),

93 (b:Item)

94 WHERE

95 id(a) <> id(b)

96 AND a.pallet_id = b.pallet_id

97 AND a.lowest_point + 59 > b.highest_point

98 AND a.leftmost_point < b.leftmost_point

99 AND a.rightmost_point <= b.rightmost_point

100 AND a.rightmost_point > b.leftmost_point

101 AND a.frontmost_point < b.frontmost_point

102 AND a.backmost_point > b.backmost_point

103 MERGE

104 (a)-[r:R_EDGE_NONE_Y_ABOVE]->(b);

105

106

107 // Relation: R_EDGE_NONE_Y_ABOVE remove extra

108 MATCH

109 (a:Item)-[r:R_EDGE_NONE_Y_ABOVE]->(b:Item)-[t:R_EDGE_NONE_Y_ABOVE]->(c:Item),

110 (a:Item)-[q:R_EDGE_NONE_Y_ABOVE]->(c:Item)

111 WHERE

112 id(a) <> id(b)

113 AND id(a) <> id(c)

114 AND id(b) <> id(c)

115 DELETE

116 q;

117 // Relation: BOTH_X_B_EDGE_ABOVE

118 MATCH

119 (a:Item),

120 (b:Item)

121 WHERE

122 id(a) <> id(b)

123 AND a.pallet_id = b.pallet_id

124 AND a.lowest_point + 59 > b.highest_point

125 AND a.leftmost_point >= b.leftmost_point

126 AND a.rightmost_point <= b.rightmost_point

127 AND a.frontmost_point >= b.frontmost_point

128 AND a.backmost_point > b.backmost_point

129 AND a.frontmost_point < b.backmost_point

130 MERGE

131 (a)-[r:BOTH_X_B_EDGE_ABOVE]->(b);

132

133

134 // Relation: BOTH_X_B_EDGE_ABOVE remove extra

135 MATCH

136 (a:Item)-[r:BOTH_X_B_EDGE_ABOVE]->(b:Item)-[t:BOTH_X_B_EDGE_ABOVE]->(c:Item),

137 (a:Item)-[q:BOTH_X_B_EDGE_ABOVE]->(c:Item)

138 WHERE

Knowledge Graphs for Improving Robot Operations in Logistics 81

A.4 Queries A APPENDICES

139 id(a) <> id(b)

140 AND id(a) <> id(c)

141 AND id(b) <> id(c)

142 DELETE

143 q;

144 // Relation: BOTH_X_BOTH_Y_ABOVE

145 MATCH

146 (a:Item),

147 (b:Item)

148 WHERE

149 id(a) <> id(b)

150 AND a.pallet_id = b.pallet_id

151 AND a.lowest_point + 59 > b.highest_point

152 AND a.leftmost_point >= b.leftmost_point

153 AND a.rightmost_point <= b.rightmost_point

154 AND a.frontmost_point >= b.frontmost_point

155 AND a.backmost_point < b.backmost_point

156 MERGE

157 (a)-[r:BOTH_X_BOTH_Y_ABOVE]->(b);

158

159

160 // Relation: BOTH_X_BOTH_Y_ABOVE remove extra

161 MATCH

162 (a:Item)-[r:BOTH_X_BOTH_Y_ABOVE]->(b:Item)-[t:BOTH_X_BOTH_Y_ABOVE]->(c:Item),

163 (a:Item)-[q:BOTH_X_BOTH_Y_ABOVE]->(c:Item)

164 WHERE

165 id(a) <> id(b)

166 AND id(a) <> id(c)

167 AND id(b) <> id(c)

168 DELETE

169 q;

170 // Relation: BOTH_X_T_EDGE_ABOVE

171 MATCH

172 (a:Item),

173 (b:Item)

174 WHERE

175 id(a) <> id(b)

176 AND a.pallet_id = b.pallet_id

177 AND a.lowest_point + 59 > b.highest_point

178 AND a.leftmost_point >= b.leftmost_point

179 AND a.rightmost_point <= b.rightmost_point

180 AND a.frontmost_point < b.frontmost_point

181 AND a.backmost_point <= b.backmost_point

182 AND a.backmost_point > b.frontmost_point

183 MERGE

184 (a)-[r:BOTH_X_T_EDGE_ABOVE]->(b);

185

186

187 // Relation: BOTH_X_T_EDGE_ABOVE remove extra

188 MATCH

189 (a:Item)-[r:BOTH_X_T_EDGE_ABOVE]->(b:Item)-[t:BOTH_X_T_EDGE_ABOVE]->(c:Item),

190 (a:Item)-[q:BOTH_X_T_EDGE_ABOVE]->(c:Item)

191 WHERE

192 id(a) <> id(b)

193 AND id(a) <> id(c)

194 AND id(b) <> id(c)

82 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

195 DELETE

196 q;

197 // Relation: BOTH_X_NONE_Y_ABOVE

198 MATCH

199 (a:Item),

200 (b:Item)

201 WHERE

202 id(a) <> id(b)

203 AND a.pallet_id = b.pallet_id

204 AND a.lowest_point + 59 > b.highest_point

205 AND a.leftmost_point >= b.leftmost_point

206 AND a.rightmost_point <= b.rightmost_point

207 AND a.frontmost_point < b.frontmost_point

208 AND a.backmost_point > b.backmost_point

209 MERGE

210 (a)-[r:BOTH_X_NONE_Y_ABOVE]->(b);

211

212

213 // Relation: BOTH_X_NONE_Y_ABOVE remove extra

214 MATCH

215 (a:Item)-[r:BOTH_X_NONE_Y_ABOVE]->(b:Item)-[t:BOTH_X_NONE_Y_ABOVE]->(c:Item),

216 (a:Item)-[q:BOTH_X_NONE_Y_ABOVE]->(c:Item)

217 WHERE

218 id(a) <> id(b)

219 AND id(a) <> id(c)

220 AND id(b) <> id(c)

221 DELETE

222 q;

223 // Relation: L_EDGE_B_EDGE_ABOVE

224 MATCH

225 (a:Item),

226 (b:Item)

227 WHERE

228 id(a) <> id(b)

229 AND a.pallet_id = b.pallet_id

230 AND a.lowest_point + 59 > b.highest_point

231 AND a.leftmost_point >= b.leftmost_point

232 AND a.rightmost_point > b.rightmost_point

233 AND a.leftmost_point < b.rightmost_point

234 AND a.frontmost_point >= b.frontmost_point

235 AND a.backmost_point > b.backmost_point

236 AND a.frontmost_point < b.backmost_point

237 MERGE

238 (a)-[r:L_EDGE_B_EDGE_ABOVE]->(b);

239

240

241 // Relation: L_EDGE_B_EDGE_ABOVE remove extra

242 MATCH

243 (a:Item)-[r:L_EDGE_B_EDGE_ABOVE]->(b:Item)-[t:L_EDGE_B_EDGE_ABOVE]->(c:Item),

244 (a:Item)-[q:L_EDGE_B_EDGE_ABOVE]->(c:Item)

245 WHERE

246 id(a) <> id(b)

247 AND id(a) <> id(c)

248 AND id(b) <> id(c)

249 DELETE

250 q;

Knowledge Graphs for Improving Robot Operations in Logistics 83

A.4 Queries A APPENDICES

251 // Relation: L_EDGE_BOTH_Y_ABOVE

252 MATCH

253 (a:Item),

254 (b:Item)

255 WHERE

256 id(a) <> id(b)

257 AND a.pallet_id = b.pallet_id

258 AND a.lowest_point + 59 > b.highest_point

259 AND a.leftmost_point >= b.leftmost_point

260 AND a.rightmost_point > b.rightmost_point

261 AND a.leftmost_point < b.rightmost_point

262 AND a.frontmost_point >= b.frontmost_point

263 AND a.backmost_point < b.backmost_point

264 MERGE

265 (a)-[r:L_EDGE_BOTH_Y_ABOVE]->(b);

266

267

268 // Relation: L_EDGE_BOTH_Y_ABOVE remove extra

269 MATCH

270 (a:Item)-[r:L_EDGE_BOTH_Y_ABOVE]->(b:Item)-[t:L_EDGE_BOTH_Y_ABOVE]->(c:Item),

271 (a:Item)-[q:L_EDGE_BOTH_Y_ABOVE]->(c:Item)

272 WHERE

273 id(a) <> id(b)

274 AND id(a) <> id(c)

275 AND id(b) <> id(c)

276 DELETE

277 q;

278 // Relation: L_EDGE_T_EDGE_ABOVE

279 MATCH

280 (a:Item),

281 (b:Item)

282 WHERE

283 id(a) <> id(b)

284 AND a.pallet_id = b.pallet_id

285 AND a.lowest_point + 59 > b.highest_point

286 AND a.leftmost_point >= b.leftmost_point

287 AND a.rightmost_point > b.rightmost_point

288 AND a.leftmost_point < b.rightmost_point

289 AND a.frontmost_point < b.frontmost_point

290 AND a.backmost_point <= b.backmost_point

291 AND a.backmost_point > b.frontmost_point

292 MERGE

293 (a)-[r:L_EDGE_T_EDGE_ABOVE]->(b);

294

295

296 // Relation: L_EDGE_T_EDGE_ABOVE remove extra

297 MATCH

298 (a:Item)-[r:L_EDGE_T_EDGE_ABOVE]->(b:Item)-[t:L_EDGE_T_EDGE_ABOVE]->(c:Item),

299 (a:Item)-[q:L_EDGE_T_EDGE_ABOVE]->(c:Item)

300 WHERE

301 id(a) <> id(b)

302 AND id(a) <> id(c)

303 AND id(b) <> id(c)

304 DELETE

305 q;

306 // Relation: L_EDGE_NONE_Y_ABOVE

84 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

307 MATCH

308 (a:Item),

309 (b:Item)

310 WHERE

311 id(a) <> id(b)

312 AND a.pallet_id = b.pallet_id

313 AND a.lowest_point + 59 > b.highest_point

314 AND a.leftmost_point >= b.leftmost_point

315 AND a.rightmost_point > b.rightmost_point

316 AND a.leftmost_point < b.rightmost_point

317 AND a.frontmost_point < b.frontmost_point

318 AND a.backmost_point > b.backmost_point

319 MERGE

320 (a)-[r:L_EDGE_NONE_Y_ABOVE]->(b);

321

322

323 // Relation: L_EDGE_NONE_Y_ABOVE remove extra

324 MATCH

325 (a:Item)-[r:L_EDGE_NONE_Y_ABOVE]->(b:Item)-[t:L_EDGE_NONE_Y_ABOVE]->(c:Item),

326 (a:Item)-[q:L_EDGE_NONE_Y_ABOVE]->(c:Item)

327 WHERE

328 id(a) <> id(b)

329 AND id(a) <> id(c)

330 AND id(b) <> id(c)

331 DELETE

332 q;

333 // Relation: NONE_X_B_EDGE_ABOVE

334 MATCH

335 (a:Item),

336 (b:Item)

337 WHERE

338 id(a) <> id(b)

339 AND a.pallet_id = b.pallet_id

340 AND a.lowest_point + 59 > b.highest_point

341 AND a.leftmost_point < b.leftmost_point

342 AND a.rightmost_point > b.rightmost_point

343 AND a.frontmost_point >= b.frontmost_point

344 AND a.backmost_point > b.backmost_point

345 AND a.frontmost_point < b.backmost_point

346 MERGE

347 (a)-[r:NONE_X_B_EDGE_ABOVE]->(b);

348

349

350 // Relation: NONE_X_B_EDGE_ABOVE remove extra

351 MATCH

352 (a:Item)-[r:NONE_X_B_EDGE_ABOVE]->(b:Item)-[t:NONE_X_B_EDGE_ABOVE]->(c:Item),

353 (a:Item)-[q:NONE_X_B_EDGE_ABOVE]->(c:Item)

354 WHERE

355 id(a) <> id(b)

356 AND id(a) <> id(c)

357 AND id(b) <> id(c)

358 DELETE

359 q;

360 // Relation: NONE_X_BOTH_Y_ABOVE

361 MATCH

362 (a:Item),

Knowledge Graphs for Improving Robot Operations in Logistics 85

A.4 Queries A APPENDICES

363 (b:Item)

364 WHERE

365 id(a) <> id(b)

366 AND a.pallet_id = b.pallet_id

367 AND a.lowest_point + 59 > b.highest_point

368 AND a.leftmost_point < b.leftmost_point

369 AND a.rightmost_point > b.rightmost_point

370 AND a.frontmost_point >= b.frontmost_point

371 AND a.backmost_point < b.backmost_point

372 MERGE

373 (a)-[r:NONE_X_BOTH_Y_ABOVE]->(b);

374

375

376 // Relation: NONE_X_BOTH_Y_ABOVE remove extra

377 MATCH

378 (a:Item)-[r:NONE_X_BOTH_Y_ABOVE]->(b:Item)-[t:NONE_X_BOTH_Y_ABOVE]->(c:Item),

379 (a:Item)-[q:NONE_X_BOTH_Y_ABOVE]->(c:Item)

380 WHERE

381 id(a) <> id(b)

382 AND id(a) <> id(c)

383 AND id(b) <> id(c)

384 DELETE

385 q;

386 // Relation: NONE_X_T_EDGE_ABOVE

387 MATCH

388 (a:Item),

389 (b:Item)

390 WHERE

391 id(a) <> id(b)

392 AND a.pallet_id = b.pallet_id

393 AND a.lowest_point + 59 > b.highest_point

394 AND a.leftmost_point < b.leftmost_point

395 AND a.rightmost_point > b.rightmost_point

396 AND a.frontmost_point < b.frontmost_point

397 AND a.backmost_point <= b.backmost_point

398 AND a.backmost_point > b.frontmost_point

399 MERGE

400 (a)-[r:NONE_X_T_EDGE_ABOVE]->(b);

401

402

403 // Relation: NONE_X_T_EDGE_ABOVE remove extra

404 MATCH

405 (a:Item)-[r:NONE_X_T_EDGE_ABOVE]->(b:Item)-[t:NONE_X_T_EDGE_ABOVE]->(c:Item),

406 (a:Item)-[q:NONE_X_T_EDGE_ABOVE]->(c:Item)

407 WHERE

408 id(a) <> id(b)

409 AND id(a) <> id(c)

410 AND id(b) <> id(c)

411 DELETE

412 q;

413 // Relation: NONE_X_NONE_Y_ABOVE

414 MATCH

415 (a:Item),

416 (b:Item)

417 WHERE

418 id(a) <> id(b)

86 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

419 AND a.pallet_id = b.pallet_id

420 AND a.lowest_point + 59 > b.highest_point

421 AND a.leftmost_point < b.leftmost_point

422 AND a.rightmost_point > b.rightmost_point

423 AND a.frontmost_point < b.frontmost_point

424 AND a.backmost_point > b.backmost_point

425 MERGE

426 (a)-[r:NONE_X_NONE_Y_ABOVE]->(b);

427

428

429 // Relation: NONE_X_NONE_Y_ABOVE remove extra

430 MATCH

431 (a:Item)-[r:NONE_X_NONE_Y_ABOVE]->(b:Item)-[t:NONE_X_NONE_Y_ABOVE]->(c:Item),

432 (a:Item)-[q:NONE_X_NONE_Y_ABOVE]->(c:Item)

433 WHERE

434 id(a) <> id(b)

435 AND id(a) <> id(c)

436 AND id(b) <> id(c)

437 DELETE

438 q;

439 // Relation: ON_TOP { reason }

440 MATCH

441 (a:Item) -[:R_EDGE_B_EDGE_ABOVE]->(b:Item)

442 WHERE

443 id(a) <> id(b)

444 CREATE

445 (a)-[:ON_TOP {reason: "R_EDGE_B_EDGE_ABOVE"}]->(b);

446

447 MATCH

448 (a:Item) -[:R_EDGE_BOTH_Y_ABOVE]->(b:Item)

449 WHERE

450 id(a) <> id(b)

451 CREATE

452 (a)-[:ON_TOP {reason: "R_EDGE_BOTH_Y_ABOVE"}]->(b);

453

454 MATCH

455 (a:Item) -[:R_EDGE_T_EDGE_ABOVE]->(b:Item)

456 WHERE

457 id(a) <> id(b)

458 CREATE

459 (a)-[:ON_TOP {reason: "R_EDGE_T_EDGE_ABOVE"}]->(b);

460

461 MATCH

462 (a:Item) -[:R_EDGE_NONE_Y_ABOVE]->(b:Item)

463 WHERE

464 id(a) <> id(b)

465 CREATE

466 (a)-[:ON_TOP {reason: "R_EDGE_NONE_Y_ABOVE"}]->(b);

467

468 MATCH

469 (a:Item) -[:BOTH_X_B_EDGE_ABOVE]->(b:Item)

470 WHERE

471 id(a) <> id(b)

472 CREATE

473 (a)-[:ON_TOP {reason: "BOTH_X_B_EDGE_ABOVE"}]->(b);

474

Knowledge Graphs for Improving Robot Operations in Logistics 87

A.4 Queries A APPENDICES

475 MATCH

476 (a:Item) -[:BOTH_X_BOTH_Y_ABOVE]->(b:Item)

477 WHERE

478 id(a) <> id(b)

479 CREATE

480 (a)-[:ON_TOP {reason: "BOTH_X_BOTH_Y_ABOVE"}]->(b);

481

482 MATCH

483 (a:Item) -[:BOTH_X_T_EDGE_ABOVE]->(b:Item)

484 WHERE

485 id(a) <> id(b)

486 CREATE

487 (a)-[:ON_TOP {reason: "BOTH_X_T_EDGE_ABOVE"}]->(b);

488

489 MATCH

490 (a:Item) -[:BOTH_X_NONE_Y_ABOVE]->(b:Item)

491 WHERE

492 id(a) <> id(b)

493 CREATE

494 (a)-[:ON_TOP {reason: "BOTH_X_NONE_Y_ABOVE"}]->(b);

495

496 MATCH

497 (a:Item) -[:L_EDGE_B_EDGE_ABOVE]->(b:Item)

498 WHERE

499 id(a) <> id(b)

500 CREATE

501 (a)-[:ON_TOP {reason: "L_EDGE_B_EDGE_ABOVE"}]->(b);

502

503 MATCH

504 (a:Item) -[:L_EDGE_BOTH_Y_ABOVE]->(b:Item)

505 WHERE

506 id(a) <> id(b)

507 CREATE

508 (a)-[:ON_TOP {reason: "L_EDGE_BOTH_Y_ABOVE"}]->(b);

509

510 MATCH

511 (a:Item) -[:L_EDGE_T_EDGE_ABOVE]->(b:Item)

512 WHERE

513 id(a) <> id(b)

514 CREATE

515 (a)-[:ON_TOP {reason: "L_EDGE_T_EDGE_ABOVE"}]->(b);

516

517 MATCH

518 (a:Item) -[:L_EDGE_NONE_Y_ABOVE]->(b:Item)

519 WHERE

520 id(a) <> id(b)

521 CREATE

522 (a)-[:ON_TOP {reason: "L_EDGE_NONE_Y_ABOVE"}]->(b);

523

524 MATCH

525 (a:Item) -[:NONE_X_B_EDGE_ABOVE]->(b:Item)

526 WHERE

527 id(a) <> id(b)

528 CREATE

529 (a)-[:ON_TOP {reason: "NONE_X_B_EDGE_ABOVE"}]->(b);

530

88 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

531 MATCH

532 (a:Item) -[:NONE_X_BOTH_Y_ABOVE]->(b:Item)

533 WHERE

534 id(a) <> id(b)

535 CREATE

536 (a)-[:ON_TOP {reason: "NONE_X_BOTH_Y_ABOVE"}]->(b);

537

538 MATCH

539 (a:Item) -[:NONE_X_T_EDGE_ABOVE]->(b:Item)

540 WHERE

541 id(a) <> id(b)

542 CREATE

543 (a)-[:ON_TOP {reason: "NONE_X_T_EDGE_ABOVE"}]->(b);

544

545 MATCH

546 (a:Item) -[:NONE_X_NONE_Y_ABOVE]->(b:Item)

547 WHERE

548 id(a) <> id(b)

549 CREATE

550 (a)-[:ON_TOP {reason: "NONE_X_NONE_Y_ABOVE"}]->(b);

551

552 // Relation: ON_TOP { gap }

553 MATCH

554 (a:Item) -[r:ON_TOP]-> (b:Item)

555 WITH

556 r, a.lowest_point - b.highest_point AS gap

557 SET

558 r.gap = gap;

559 // Relation: ON_TOP remove extra

560 MATCH

561 (a:Item)-[r:ON_TOP]->(b:Item)-[t:ON_TOP]->(c:Item),

562 (a:Item)-[q:ON_TOP]->(c:Item)

563 WHERE

564 id(a) <> id(b)

565 AND id(a) <> id(c)

566 AND id(b) <> id(c)

567 DELETE

568 q;

Cypher Query 15: Resulting Cypher query for the ON TOP OF relation.

1 // Relation: NEXT_TO.

2 // Contains 64 sub-queries to create.

3

4

5

6

7 // Relation: L_HIGH_Z_TOP_Y

8 MATCH

9 (a:Item),

10 (b:Item)

11 WHERE

12 id(a) <> id(b)

13 AND a.pallet_id = b.pallet_id

14 AND a.rightmost_point < b.leftmost_point

Knowledge Graphs for Improving Robot Operations in Logistics 89

A.4 Queries A APPENDICES

15 AND a.lowest_point < b.highest_point

16 AND a.lowest_point >= b.lowest_point

17 AND a.highest_point > b.highest_point

18 AND a.frontmost_point < b.backmost_point

19 AND a.frontmost_point >= b.frontmost_point

20 AND a.backmost_point > b.backmost_point

21 MERGE

22 (a)-[r:L_HIGH_Z_TOP_Y]->(b);

23

24

25 // Relation: L_HIGH_Z_TOP_Y remove extra

26 MATCH

27 (a:Item)-[r:L_HIGH_Z_TOP_Y]->(b:Item)-[t:L_HIGH_Z_TOP_Y]->(c:Item),

28 (a:Item)-[q:L_HIGH_Z_TOP_Y]->(c:Item)

29 WHERE

30 id(a) <> id(b)

31 AND id(a) <> id(c)

32 AND id(b) <> id(c)

33 DELETE

34 q;

35 // Relation: L_HIGH_Z_MID_Y

36 MATCH

37 (a:Item),

38 (b:Item)

39 WHERE

40 id(a) <> id(b)

41 AND a.pallet_id = b.pallet_id

42 AND a.rightmost_point < b.leftmost_point

43 AND a.lowest_point < b.highest_point

44 AND a.lowest_point >= b.lowest_point

45 AND a.highest_point > b.highest_point

46 AND a.frontmost_point < b.frontmost_point

47 AND a.backmost_point > b.frontmost_point

48 AND a.backmost_point <= b.backmost_point

49 MERGE

50 (a)-[r:L_HIGH_Z_MID_Y]->(b);

51

52

53 // Relation: L_HIGH_Z_MID_Y remove extra

54 MATCH

55 (a:Item)-[r:L_HIGH_Z_MID_Y]->(b:Item)-[t:L_HIGH_Z_MID_Y]->(c:Item),

56 (a:Item)-[q:L_HIGH_Z_MID_Y]->(c:Item)

57 WHERE

58 id(a) <> id(b)

59 AND id(a) <> id(c)

60 AND id(b) <> id(c)

61 DELETE

62 q;

63 // Relation: L_HIGH_Z_BOT_Y

64 MATCH

65 (a:Item),

66 (b:Item)

67 WHERE

68 id(a) <> id(b)

69 AND a.pallet_id = b.pallet_id

70 AND a.rightmost_point < b.leftmost_point

90 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

71 AND a.lowest_point < b.highest_point

72 AND a.lowest_point >= b.lowest_point

73 AND a.highest_point > b.highest_point

74 AND a.backmost_point > b.backmost_point

75 AND a.frontmost_point < b.frontmost_point

76 MERGE

77 (a)-[r:L_HIGH_Z_BOT_Y]->(b);

78

79

80 // Relation: L_HIGH_Z_BOT_Y remove extra

81 MATCH

82 (a:Item)-[r:L_HIGH_Z_BOT_Y]->(b:Item)-[t:L_HIGH_Z_BOT_Y]->(c:Item),

83 (a:Item)-[q:L_HIGH_Z_BOT_Y]->(c:Item)

84 WHERE

85 id(a) <> id(b)

86 AND id(a) <> id(c)

87 AND id(b) <> id(c)

88 DELETE

89 q;

90 // Relation: L_HIGH_Z_BIG_Y

91 MATCH

92 (a:Item),

93 (b:Item)

94 WHERE

95 id(a) <> id(b)

96 AND a.pallet_id = b.pallet_id

97 AND a.rightmost_point < b.leftmost_point

98 AND a.lowest_point < b.highest_point

99 AND a.lowest_point >= b.lowest_point

100 AND a.highest_point > b.highest_point

101 AND a.backmost_point <= b.backmost_point

102 AND a.frontmost_point >= b.frontmost_point

103 MERGE

104 (a)-[r:L_HIGH_Z_BIG_Y]->(b);

105

106

107 // Relation: L_HIGH_Z_BIG_Y remove extra

108 MATCH

109 (a:Item)-[r:L_HIGH_Z_BIG_Y]->(b:Item)-[t:L_HIGH_Z_BIG_Y]->(c:Item),

110 (a:Item)-[q:L_HIGH_Z_BIG_Y]->(c:Item)

111 WHERE

112 id(a) <> id(b)

113 AND id(a) <> id(c)

114 AND id(b) <> id(c)

115 DELETE

116 q;

117 // Relation: L_LOW_Z_TOP_Y

118 MATCH

119 (a:Item),

120 (b:Item)

121 WHERE

122 id(a) <> id(b)

123 AND a.pallet_id = b.pallet_id

124 AND a.rightmost_point < b.leftmost_point

125 AND a.lowest_point < b.lowest_point

126 AND a.highest_point > b.lowest_point

Knowledge Graphs for Improving Robot Operations in Logistics 91

A.4 Queries A APPENDICES

127 AND a.highest_point <= b.highest_point

128 AND a.frontmost_point < b.backmost_point

129 AND a.frontmost_point >= b.frontmost_point

130 AND a.backmost_point > b.backmost_point

131 MERGE

132 (a)-[r:L_LOW_Z_TOP_Y]->(b);

133

134

135 // Relation: L_LOW_Z_TOP_Y remove extra

136 MATCH

137 (a:Item)-[r:L_LOW_Z_TOP_Y]->(b:Item)-[t:L_LOW_Z_TOP_Y]->(c:Item),

138 (a:Item)-[q:L_LOW_Z_TOP_Y]->(c:Item)

139 WHERE

140 id(a) <> id(b)

141 AND id(a) <> id(c)

142 AND id(b) <> id(c)

143 DELETE

144 q;

145 // Relation: L_LOW_Z_MID_Y

146 MATCH

147 (a:Item),

148 (b:Item)

149 WHERE

150 id(a) <> id(b)

151 AND a.pallet_id = b.pallet_id

152 AND a.rightmost_point < b.leftmost_point

153 AND a.lowest_point < b.lowest_point

154 AND a.highest_point > b.lowest_point

155 AND a.highest_point <= b.highest_point

156 AND a.frontmost_point < b.frontmost_point

157 AND a.backmost_point > b.frontmost_point

158 AND a.backmost_point <= b.backmost_point

159 MERGE

160 (a)-[r:L_LOW_Z_MID_Y]->(b);

161

162

163 // Relation: L_LOW_Z_MID_Y remove extra

164 MATCH

165 (a:Item)-[r:L_LOW_Z_MID_Y]->(b:Item)-[t:L_LOW_Z_MID_Y]->(c:Item),

166 (a:Item)-[q:L_LOW_Z_MID_Y]->(c:Item)

167 WHERE

168 id(a) <> id(b)

169 AND id(a) <> id(c)

170 AND id(b) <> id(c)

171 DELETE

172 q;

173 // Relation: L_LOW_Z_BOT_Y

174 MATCH

175 (a:Item),

176 (b:Item)

177 WHERE

178 id(a) <> id(b)

179 AND a.pallet_id = b.pallet_id

180 AND a.rightmost_point < b.leftmost_point

181 AND a.lowest_point < b.lowest_point

182 AND a.highest_point > b.lowest_point

92 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

183 AND a.highest_point <= b.highest_point

184 AND a.backmost_point > b.backmost_point

185 AND a.frontmost_point < b.frontmost_point

186 MERGE

187 (a)-[r:L_LOW_Z_BOT_Y]->(b);

188

189

190 // Relation: L_LOW_Z_BOT_Y remove extra

191 MATCH

192 (a:Item)-[r:L_LOW_Z_BOT_Y]->(b:Item)-[t:L_LOW_Z_BOT_Y]->(c:Item),

193 (a:Item)-[q:L_LOW_Z_BOT_Y]->(c:Item)

194 WHERE

195 id(a) <> id(b)

196 AND id(a) <> id(c)

197 AND id(b) <> id(c)

198 DELETE

199 q;

200 // Relation: L_LOW_Z_BIG_Y

201 MATCH

202 (a:Item),

203 (b:Item)

204 WHERE

205 id(a) <> id(b)

206 AND a.pallet_id = b.pallet_id

207 AND a.rightmost_point < b.leftmost_point

208 AND a.lowest_point < b.lowest_point

209 AND a.highest_point > b.lowest_point

210 AND a.highest_point <= b.highest_point

211 AND a.backmost_point <= b.backmost_point

212 AND a.frontmost_point >= b.frontmost_point

213 MERGE

214 (a)-[r:L_LOW_Z_BIG_Y]->(b);

215

216

217 // Relation: L_LOW_Z_BIG_Y remove extra

218 MATCH

219 (a:Item)-[r:L_LOW_Z_BIG_Y]->(b:Item)-[t:L_LOW_Z_BIG_Y]->(c:Item),

220 (a:Item)-[q:L_LOW_Z_BIG_Y]->(c:Item)

221 WHERE

222 id(a) <> id(b)

223 AND id(a) <> id(c)

224 AND id(b) <> id(c)

225 DELETE

226 q;

227 // Relation: L_BIG_Z_TOP_Y

228 MATCH

229 (a:Item),

230 (b:Item)

231 WHERE

232 id(a) <> id(b)

233 AND a.pallet_id = b.pallet_id

234 AND a.rightmost_point < b.leftmost_point

235 AND a.highest_point > b.highest_point

236 AND a.lowest_point < b.lowest_point

237 AND a.frontmost_point < b.backmost_point

238 AND a.frontmost_point >= b.frontmost_point

Knowledge Graphs for Improving Robot Operations in Logistics 93

A.4 Queries A APPENDICES

239 AND a.backmost_point > b.backmost_point

240 MERGE

241 (a)-[r:L_BIG_Z_TOP_Y]->(b);

242

243

244 // Relation: L_BIG_Z_TOP_Y remove extra

245 MATCH

246 (a:Item)-[r:L_BIG_Z_TOP_Y]->(b:Item)-[t:L_BIG_Z_TOP_Y]->(c:Item),

247 (a:Item)-[q:L_BIG_Z_TOP_Y]->(c:Item)

248 WHERE

249 id(a) <> id(b)

250 AND id(a) <> id(c)

251 AND id(b) <> id(c)

252 DELETE

253 q;

254 // Relation: L_BIG_Z_MID_Y

255 MATCH

256 (a:Item),

257 (b:Item)

258 WHERE

259 id(a) <> id(b)

260 AND a.pallet_id = b.pallet_id

261 AND a.rightmost_point < b.leftmost_point

262 AND a.highest_point > b.highest_point

263 AND a.lowest_point < b.lowest_point

264 AND a.frontmost_point < b.frontmost_point

265 AND a.backmost_point > b.frontmost_point

266 AND a.backmost_point <= b.backmost_point

267 MERGE

268 (a)-[r:L_BIG_Z_MID_Y]->(b);

269

270

271 // Relation: L_BIG_Z_MID_Y remove extra

272 MATCH

273 (a:Item)-[r:L_BIG_Z_MID_Y]->(b:Item)-[t:L_BIG_Z_MID_Y]->(c:Item),

274 (a:Item)-[q:L_BIG_Z_MID_Y]->(c:Item)

275 WHERE

276 id(a) <> id(b)

277 AND id(a) <> id(c)

278 AND id(b) <> id(c)

279 DELETE

280 q;

281 // Relation: L_BIG_Z_BOT_Y

282 MATCH

283 (a:Item),

284 (b:Item)

285 WHERE

286 id(a) <> id(b)

287 AND a.pallet_id = b.pallet_id

288 AND a.rightmost_point < b.leftmost_point

289 AND a.highest_point > b.highest_point

290 AND a.lowest_point < b.lowest_point

291 AND a.backmost_point > b.backmost_point

292 AND a.frontmost_point < b.frontmost_point

293 MERGE

294 (a)-[r:L_BIG_Z_BOT_Y]->(b);

94 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

295

296

297 // Relation: L_BIG_Z_BOT_Y remove extra

298 MATCH

299 (a:Item)-[r:L_BIG_Z_BOT_Y]->(b:Item)-[t:L_BIG_Z_BOT_Y]->(c:Item),

300 (a:Item)-[q:L_BIG_Z_BOT_Y]->(c:Item)

301 WHERE

302 id(a) <> id(b)

303 AND id(a) <> id(c)

304 AND id(b) <> id(c)

305 DELETE

306 q;

307 // Relation: L_BIG_Z_BIG_Y

308 MATCH

309 (a:Item),

310 (b:Item)

311 WHERE

312 id(a) <> id(b)

313 AND a.pallet_id = b.pallet_id

314 AND a.rightmost_point < b.leftmost_point

315 AND a.highest_point > b.highest_point

316 AND a.lowest_point < b.lowest_point

317 AND a.backmost_point <= b.backmost_point

318 AND a.frontmost_point >= b.frontmost_point

319 MERGE

320 (a)-[r:L_BIG_Z_BIG_Y]->(b);

321

322

323 // Relation: L_BIG_Z_BIG_Y remove extra

324 MATCH

325 (a:Item)-[r:L_BIG_Z_BIG_Y]->(b:Item)-[t:L_BIG_Z_BIG_Y]->(c:Item),

326 (a:Item)-[q:L_BIG_Z_BIG_Y]->(c:Item)

327 WHERE

328 id(a) <> id(b)

329 AND id(a) <> id(c)

330 AND id(b) <> id(c)

331 DELETE

332 q;

333 // Relation: L_SMALL_Z_TOP_Y

334 MATCH

335 (a:Item),

336 (b:Item)

337 WHERE

338 id(a) <> id(b)

339 AND a.pallet_id = b.pallet_id

340 AND a.rightmost_point < b.leftmost_point

341 AND a.highest_point <= b.highest_point

342 AND a.lowest_point >= b.lowest_point

343 AND a.frontmost_point < b.backmost_point

344 AND a.frontmost_point >= b.frontmost_point

345 AND a.backmost_point > b.backmost_point

346 MERGE

347 (a)-[r:L_SMALL_Z_TOP_Y]->(b);

348

349

350 // Relation: L_SMALL_Z_TOP_Y remove extra

Knowledge Graphs for Improving Robot Operations in Logistics 95

A.4 Queries A APPENDICES

351 MATCH

352 (a:Item)-[r:L_SMALL_Z_TOP_Y]->(b:Item)-[t:L_SMALL_Z_TOP_Y]->(c:Item),

353 (a:Item)-[q:L_SMALL_Z_TOP_Y]->(c:Item)

354 WHERE

355 id(a) <> id(b)

356 AND id(a) <> id(c)

357 AND id(b) <> id(c)

358 DELETE

359 q;

360 // Relation: L_SMALL_Z_MID_Y

361 MATCH

362 (a:Item),

363 (b:Item)

364 WHERE

365 id(a) <> id(b)

366 AND a.pallet_id = b.pallet_id

367 AND a.rightmost_point < b.leftmost_point

368 AND a.highest_point <= b.highest_point

369 AND a.lowest_point >= b.lowest_point

370 AND a.frontmost_point < b.frontmost_point

371 AND a.backmost_point > b.frontmost_point

372 AND a.backmost_point <= b.backmost_point

373 MERGE

374 (a)-[r:L_SMALL_Z_MID_Y]->(b);

375

376

377 // Relation: L_SMALL_Z_MID_Y remove extra

378 MATCH

379 (a:Item)-[r:L_SMALL_Z_MID_Y]->(b:Item)-[t:L_SMALL_Z_MID_Y]->(c:Item),

380 (a:Item)-[q:L_SMALL_Z_MID_Y]->(c:Item)

381 WHERE

382 id(a) <> id(b)

383 AND id(a) <> id(c)

384 AND id(b) <> id(c)

385 DELETE

386 q;

387 // Relation: L_SMALL_Z_BOT_Y

388 MATCH

389 (a:Item),

390 (b:Item)

391 WHERE

392 id(a) <> id(b)

393 AND a.pallet_id = b.pallet_id

394 AND a.rightmost_point < b.leftmost_point

395 AND a.highest_point <= b.highest_point

396 AND a.lowest_point >= b.lowest_point

397 AND a.backmost_point > b.backmost_point

398 AND a.frontmost_point < b.frontmost_point

399 MERGE

400 (a)-[r:L_SMALL_Z_BOT_Y]->(b);

401

402

403 // Relation: L_SMALL_Z_BOT_Y remove extra

404 MATCH

405 (a:Item)-[r:L_SMALL_Z_BOT_Y]->(b:Item)-[t:L_SMALL_Z_BOT_Y]->(c:Item),

406 (a:Item)-[q:L_SMALL_Z_BOT_Y]->(c:Item)

96 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

407 WHERE

408 id(a) <> id(b)

409 AND id(a) <> id(c)

410 AND id(b) <> id(c)

411 DELETE

412 q;

413 // Relation: L_SMALL_Z_BIG_Y

414 MATCH

415 (a:Item),

416 (b:Item)

417 WHERE

418 id(a) <> id(b)

419 AND a.pallet_id = b.pallet_id

420 AND a.rightmost_point < b.leftmost_point

421 AND a.highest_point <= b.highest_point

422 AND a.lowest_point >= b.lowest_point

423 AND a.backmost_point <= b.backmost_point

424 AND a.frontmost_point >= b.frontmost_point

425 MERGE

426 (a)-[r:L_SMALL_Z_BIG_Y]->(b);

427

428

429 // Relation: L_SMALL_Z_BIG_Y remove extra

430 MATCH

431 (a:Item)-[r:L_SMALL_Z_BIG_Y]->(b:Item)-[t:L_SMALL_Z_BIG_Y]->(c:Item),

432 (a:Item)-[q:L_SMALL_Z_BIG_Y]->(c:Item)

433 WHERE

434 id(a) <> id(b)

435 AND id(a) <> id(c)

436 AND id(b) <> id(c)

437 DELETE

438 q;

439 // Relation: F_HIGH_Z_LEFT_X

440 MATCH

441 (a:Item),

442 (b:Item)

443 WHERE

444 id(a) <> id(b)

445 AND a.pallet_id = b.pallet_id

446 AND a.backmost_point < b.frontmost_point

447 AND a.lowest_point < b.highest_point

448 AND a.lowest_point >= b.lowest_point

449 AND a.highest_point > b.highest_point

450 AND a.leftmost_point < b.rightmost_point

451 AND a.leftmost_point >= b.leftmost_point

452 AND a.rightmost_point > b.rightmost_point

453 MERGE

454 (a)-[r:F_HIGH_Z_LEFT_X]->(b);

455

456

457 // Relation: F_HIGH_Z_LEFT_X remove extra

458 MATCH

459 (a:Item)-[r:F_HIGH_Z_LEFT_X]->(b:Item)-[t:F_HIGH_Z_LEFT_X]->(c:Item),

460 (a:Item)-[q:F_HIGH_Z_LEFT_X]->(c:Item)

461 WHERE

462 id(a) <> id(b)

Knowledge Graphs for Improving Robot Operations in Logistics 97

A.4 Queries A APPENDICES

463 AND id(a) <> id(c)

464 AND id(b) <> id(c)

465 DELETE

466 q;

467 // Relation: F_HIGH_Z_MID_X

468 MATCH

469 (a:Item),

470 (b:Item)

471 WHERE

472 id(a) <> id(b)

473 AND a.pallet_id = b.pallet_id

474 AND a.backmost_point < b.frontmost_point

475 AND a.lowest_point < b.highest_point

476 AND a.lowest_point >= b.lowest_point

477 AND a.highest_point > b.highest_point

478 AND a.leftmost_point < b.leftmost_point

479 AND a.rightmost_point > b.leftmost_point

480 AND a.rightmost_point <= b.rightmost_point

481 MERGE

482 (a)-[r:F_HIGH_Z_MID_X]->(b);

483

484

485 // Relation: F_HIGH_Z_MID_X remove extra

486 MATCH

487 (a:Item)-[r:F_HIGH_Z_MID_X]->(b:Item)-[t:F_HIGH_Z_MID_X]->(c:Item),

488 (a:Item)-[q:F_HIGH_Z_MID_X]->(c:Item)

489 WHERE

490 id(a) <> id(b)

491 AND id(a) <> id(c)

492 AND id(b) <> id(c)

493 DELETE

494 q;

495 // Relation: F_HIGH_Z_RIGHT_X

496 MATCH

497 (a:Item),

498 (b:Item)

499 WHERE

500 id(a) <> id(b)

501 AND a.pallet_id = b.pallet_id

502 AND a.backmost_point < b.frontmost_point

503 AND a.lowest_point < b.highest_point

504 AND a.lowest_point >= b.lowest_point

505 AND a.highest_point > b.highest_point

506 AND a.rightmost_point > b.rightmost_point

507 AND a.leftmost_point < b.leftmost_point

508 MERGE

509 (a)-[r:F_HIGH_Z_RIGHT_X]->(b);

510

511

512 // Relation: F_HIGH_Z_RIGHT_X remove extra

513 MATCH

514 (a:Item)-[r:F_HIGH_Z_RIGHT_X]->(b:Item)-[t:F_HIGH_Z_RIGHT_X]->(c:Item),

515 (a:Item)-[q:F_HIGH_Z_RIGHT_X]->(c:Item)

516 WHERE

517 id(a) <> id(b)

518 AND id(a) <> id(c)

98 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

519 AND id(b) <> id(c)

520 DELETE

521 q;

522 // Relation: F_HIGH_Z_LONG_X

523 MATCH

524 (a:Item),

525 (b:Item)

526 WHERE

527 id(a) <> id(b)

528 AND a.pallet_id = b.pallet_id

529 AND a.backmost_point < b.frontmost_point

530 AND a.lowest_point < b.highest_point

531 AND a.lowest_point >= b.lowest_point

532 AND a.highest_point > b.highest_point

533 AND a.rightmost_point <= b.rightmost_point

534 AND a.leftmost_point >= b.leftmost_point

535 MERGE

536 (a)-[r:F_HIGH_Z_LONG_X]->(b);

537

538

539 // Relation: F_HIGH_Z_LONG_X remove extra

540 MATCH

541 (a:Item)-[r:F_HIGH_Z_LONG_X]->(b:Item)-[t:F_HIGH_Z_LONG_X]->(c:Item),

542 (a:Item)-[q:F_HIGH_Z_LONG_X]->(c:Item)

543 WHERE

544 id(a) <> id(b)

545 AND id(a) <> id(c)

546 AND id(b) <> id(c)

547 DELETE

548 q;

549 // Relation: F_LOW_Z_LEFT_X

550 MATCH

551 (a:Item),

552 (b:Item)

553 WHERE

554 id(a) <> id(b)

555 AND a.pallet_id = b.pallet_id

556 AND a.backmost_point < b.frontmost_point

557 AND a.lowest_point < b.lowest_point

558 AND a.highest_point > b.lowest_point

559 AND a.highest_point <= b.highest_point

560 AND a.leftmost_point < b.rightmost_point

561 AND a.leftmost_point >= b.leftmost_point

562 AND a.rightmost_point > b.rightmost_point

563 MERGE

564 (a)-[r:F_LOW_Z_LEFT_X]->(b);

565

566

567 // Relation: F_LOW_Z_LEFT_X remove extra

568 MATCH

569 (a:Item)-[r:F_LOW_Z_LEFT_X]->(b:Item)-[t:F_LOW_Z_LEFT_X]->(c:Item),

570 (a:Item)-[q:F_LOW_Z_LEFT_X]->(c:Item)

571 WHERE

572 id(a) <> id(b)

573 AND id(a) <> id(c)

574 AND id(b) <> id(c)

Knowledge Graphs for Improving Robot Operations in Logistics 99

A.4 Queries A APPENDICES

575 DELETE

576 q;

577 // Relation: F_LOW_Z_MID_X

578 MATCH

579 (a:Item),

580 (b:Item)

581 WHERE

582 id(a) <> id(b)

583 AND a.pallet_id = b.pallet_id

584 AND a.backmost_point < b.frontmost_point

585 AND a.lowest_point < b.lowest_point

586 AND a.highest_point > b.lowest_point

587 AND a.highest_point <= b.highest_point

588 AND a.leftmost_point < b.leftmost_point

589 AND a.rightmost_point > b.leftmost_point

590 AND a.rightmost_point <= b.rightmost_point

591 MERGE

592 (a)-[r:F_LOW_Z_MID_X]->(b);

593

594

595 // Relation: F_LOW_Z_MID_X remove extra

596 MATCH

597 (a:Item)-[r:F_LOW_Z_MID_X]->(b:Item)-[t:F_LOW_Z_MID_X]->(c:Item),

598 (a:Item)-[q:F_LOW_Z_MID_X]->(c:Item)

599 WHERE

600 id(a) <> id(b)

601 AND id(a) <> id(c)

602 AND id(b) <> id(c)

603 DELETE

604 q;

605 // Relation: F_LOW_Z_RIGHT_X

606 MATCH

607 (a:Item),

608 (b:Item)

609 WHERE

610 id(a) <> id(b)

611 AND a.pallet_id = b.pallet_id

612 AND a.backmost_point < b.frontmost_point

613 AND a.lowest_point < b.lowest_point

614 AND a.highest_point > b.lowest_point

615 AND a.highest_point <= b.highest_point

616 AND a.rightmost_point > b.rightmost_point

617 AND a.leftmost_point < b.leftmost_point

618 MERGE

619 (a)-[r:F_LOW_Z_RIGHT_X]->(b);

620

621

622 // Relation: F_LOW_Z_RIGHT_X remove extra

623 MATCH

624 (a:Item)-[r:F_LOW_Z_RIGHT_X]->(b:Item)-[t:F_LOW_Z_RIGHT_X]->(c:Item),

625 (a:Item)-[q:F_LOW_Z_RIGHT_X]->(c:Item)

626 WHERE

627 id(a) <> id(b)

628 AND id(a) <> id(c)

629 AND id(b) <> id(c)

630 DELETE

100 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

631 q;

632 // Relation: F_LOW_Z_LONG_X

633 MATCH

634 (a:Item),

635 (b:Item)

636 WHERE

637 id(a) <> id(b)

638 AND a.pallet_id = b.pallet_id

639 AND a.backmost_point < b.frontmost_point

640 AND a.lowest_point < b.lowest_point

641 AND a.highest_point > b.lowest_point

642 AND a.highest_point <= b.highest_point

643 AND a.rightmost_point <= b.rightmost_point

644 AND a.leftmost_point >= b.leftmost_point

645 MERGE

646 (a)-[r:F_LOW_Z_LONG_X]->(b);

647

648

649 // Relation: F_LOW_Z_LONG_X remove extra

650 MATCH

651 (a:Item)-[r:F_LOW_Z_LONG_X]->(b:Item)-[t:F_LOW_Z_LONG_X]->(c:Item),

652 (a:Item)-[q:F_LOW_Z_LONG_X]->(c:Item)

653 WHERE

654 id(a) <> id(b)

655 AND id(a) <> id(c)

656 AND id(b) <> id(c)

657 DELETE

658 q;

659 // Relation: F_BIG_Z_LEFT_X

660 MATCH

661 (a:Item),

662 (b:Item)

663 WHERE

664 id(a) <> id(b)

665 AND a.pallet_id = b.pallet_id

666 AND a.backmost_point < b.frontmost_point

667 AND a.highest_point > b.highest_point

668 AND a.lowest_point < b.lowest_point

669 AND a.leftmost_point < b.rightmost_point

670 AND a.leftmost_point >= b.leftmost_point

671 AND a.rightmost_point > b.rightmost_point

672 MERGE

673 (a)-[r:F_BIG_Z_LEFT_X]->(b);

674

675

676 // Relation: F_BIG_Z_LEFT_X remove extra

677 MATCH

678 (a:Item)-[r:F_BIG_Z_LEFT_X]->(b:Item)-[t:F_BIG_Z_LEFT_X]->(c:Item),

679 (a:Item)-[q:F_BIG_Z_LEFT_X]->(c:Item)

680 WHERE

681 id(a) <> id(b)

682 AND id(a) <> id(c)

683 AND id(b) <> id(c)

684 DELETE

685 q;

686 // Relation: F_BIG_Z_MID_X

Knowledge Graphs for Improving Robot Operations in Logistics 101

A.4 Queries A APPENDICES

687 MATCH

688 (a:Item),

689 (b:Item)

690 WHERE

691 id(a) <> id(b)

692 AND a.pallet_id = b.pallet_id

693 AND a.backmost_point < b.frontmost_point

694 AND a.highest_point > b.highest_point

695 AND a.lowest_point < b.lowest_point

696 AND a.leftmost_point < b.leftmost_point

697 AND a.rightmost_point > b.leftmost_point

698 AND a.rightmost_point <= b.rightmost_point

699 MERGE

700 (a)-[r:F_BIG_Z_MID_X]->(b);

701

702

703 // Relation: F_BIG_Z_MID_X remove extra

704 MATCH

705 (a:Item)-[r:F_BIG_Z_MID_X]->(b:Item)-[t:F_BIG_Z_MID_X]->(c:Item),

706 (a:Item)-[q:F_BIG_Z_MID_X]->(c:Item)

707 WHERE

708 id(a) <> id(b)

709 AND id(a) <> id(c)

710 AND id(b) <> id(c)

711 DELETE

712 q;

713 // Relation: F_BIG_Z_RIGHT_X

714 MATCH

715 (a:Item),

716 (b:Item)

717 WHERE

718 id(a) <> id(b)

719 AND a.pallet_id = b.pallet_id

720 AND a.backmost_point < b.frontmost_point

721 AND a.highest_point > b.highest_point

722 AND a.lowest_point < b.lowest_point

723 AND a.rightmost_point > b.rightmost_point

724 AND a.leftmost_point < b.leftmost_point

725 MERGE

726 (a)-[r:F_BIG_Z_RIGHT_X]->(b);

727

728

729 // Relation: F_BIG_Z_RIGHT_X remove extra

730 MATCH

731 (a:Item)-[r:F_BIG_Z_RIGHT_X]->(b:Item)-[t:F_BIG_Z_RIGHT_X]->(c:Item),

732 (a:Item)-[q:F_BIG_Z_RIGHT_X]->(c:Item)

733 WHERE

734 id(a) <> id(b)

735 AND id(a) <> id(c)

736 AND id(b) <> id(c)

737 DELETE

738 q;

739 // Relation: F_BIG_Z_LONG_X

740 MATCH

741 (a:Item),

742 (b:Item)

102 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

743 WHERE

744 id(a) <> id(b)

745 AND a.pallet_id = b.pallet_id

746 AND a.backmost_point < b.frontmost_point

747 AND a.highest_point > b.highest_point

748 AND a.lowest_point < b.lowest_point

749 AND a.rightmost_point <= b.rightmost_point

750 AND a.leftmost_point >= b.leftmost_point

751 MERGE

752 (a)-[r:F_BIG_Z_LONG_X]->(b);

753

754

755 // Relation: F_BIG_Z_LONG_X remove extra

756 MATCH

757 (a:Item)-[r:F_BIG_Z_LONG_X]->(b:Item)-[t:F_BIG_Z_LONG_X]->(c:Item),

758 (a:Item)-[q:F_BIG_Z_LONG_X]->(c:Item)

759 WHERE

760 id(a) <> id(b)

761 AND id(a) <> id(c)

762 AND id(b) <> id(c)

763 DELETE

764 q;

765 // Relation: F_SMALL_Z_LEFT_X

766 MATCH

767 (a:Item),

768 (b:Item)

769 WHERE

770 id(a) <> id(b)

771 AND a.pallet_id = b.pallet_id

772 AND a.backmost_point < b.frontmost_point

773 AND a.highest_point <= b.highest_point

774 AND a.lowest_point >= b.lowest_point

775 AND a.leftmost_point < b.rightmost_point

776 AND a.leftmost_point >= b.leftmost_point

777 AND a.rightmost_point > b.rightmost_point

778 MERGE

779 (a)-[r:F_SMALL_Z_LEFT_X]->(b);

780

781

782 // Relation: F_SMALL_Z_LEFT_X remove extra

783 MATCH

784 (a:Item)-[r:F_SMALL_Z_LEFT_X]->(b:Item)-[t:F_SMALL_Z_LEFT_X]->(c:Item),

785 (a:Item)-[q:F_SMALL_Z_LEFT_X]->(c:Item)

786 WHERE

787 id(a) <> id(b)

788 AND id(a) <> id(c)

789 AND id(b) <> id(c)

790 DELETE

791 q;

792 // Relation: F_SMALL_Z_MID_X

793 MATCH

794 (a:Item),

795 (b:Item)

796 WHERE

797 id(a) <> id(b)

798 AND a.pallet_id = b.pallet_id

Knowledge Graphs for Improving Robot Operations in Logistics 103

A.4 Queries A APPENDICES

799 AND a.backmost_point < b.frontmost_point

800 AND a.highest_point <= b.highest_point

801 AND a.lowest_point >= b.lowest_point

802 AND a.leftmost_point < b.leftmost_point

803 AND a.rightmost_point > b.leftmost_point

804 AND a.rightmost_point <= b.rightmost_point

805 MERGE

806 (a)-[r:F_SMALL_Z_MID_X]->(b);

807

808

809 // Relation: F_SMALL_Z_MID_X remove extra

810 MATCH

811 (a:Item)-[r:F_SMALL_Z_MID_X]->(b:Item)-[t:F_SMALL_Z_MID_X]->(c:Item),

812 (a:Item)-[q:F_SMALL_Z_MID_X]->(c:Item)

813 WHERE

814 id(a) <> id(b)

815 AND id(a) <> id(c)

816 AND id(b) <> id(c)

817 DELETE

818 q;

819 // Relation: F_SMALL_Z_RIGHT_X

820 MATCH

821 (a:Item),

822 (b:Item)

823 WHERE

824 id(a) <> id(b)

825 AND a.pallet_id = b.pallet_id

826 AND a.backmost_point < b.frontmost_point

827 AND a.highest_point <= b.highest_point

828 AND a.lowest_point >= b.lowest_point

829 AND a.rightmost_point > b.rightmost_point

830 AND a.leftmost_point < b.leftmost_point

831 MERGE

832 (a)-[r:F_SMALL_Z_RIGHT_X]->(b);

833

834

835 // Relation: F_SMALL_Z_RIGHT_X remove extra

836 MATCH

837 (a:Item)-[r:F_SMALL_Z_RIGHT_X]->(b:Item)-[t:F_SMALL_Z_RIGHT_X]->(c:Item),

838 (a:Item)-[q:F_SMALL_Z_RIGHT_X]->(c:Item)

839 WHERE

840 id(a) <> id(b)

841 AND id(a) <> id(c)

842 AND id(b) <> id(c)

843 DELETE

844 q;

845 // Relation: F_SMALL_Z_LONG_X

846 MATCH

847 (a:Item),

848 (b:Item)

849 WHERE

850 id(a) <> id(b)

851 AND a.pallet_id = b.pallet_id

852 AND a.backmost_point < b.frontmost_point

853 AND a.highest_point <= b.highest_point

854 AND a.lowest_point >= b.lowest_point

104 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

855 AND a.rightmost_point <= b.rightmost_point

856 AND a.leftmost_point >= b.leftmost_point

857 MERGE

858 (a)-[r:F_SMALL_Z_LONG_X]->(b);

859

860

861 // Relation: F_SMALL_Z_LONG_X remove extra

862 MATCH

863 (a:Item)-[r:F_SMALL_Z_LONG_X]->(b:Item)-[t:F_SMALL_Z_LONG_X]->(c:Item),

864 (a:Item)-[q:F_SMALL_Z_LONG_X]->(c:Item)

865 WHERE

866 id(a) <> id(b)

867 AND id(a) <> id(c)

868 AND id(b) <> id(c)

869 DELETE

870 q;

871 // Relation: R_HIGH_Z_TOP_Y

872 MATCH

873 (a:Item),

874 (b:Item)

875 WHERE

876 id(a) <> id(b)

877 AND a.pallet_id = b.pallet_id

878 AND a.leftmost_point > b.rightmost_point

879 AND a.lowest_point < b.highest_point

880 AND a.lowest_point >= b.lowest_point

881 AND a.highest_point > b.highest_point

882 AND a.frontmost_point < b.backmost_point

883 AND a.frontmost_point >= b.frontmost_point

884 AND a.backmost_point > b.backmost_point

885 MERGE

886 (a)-[r:R_HIGH_Z_TOP_Y]->(b);

887

888

889 // Relation: R_HIGH_Z_TOP_Y remove extra

890 MATCH

891 (a:Item)-[r:R_HIGH_Z_TOP_Y]->(b:Item)-[t:R_HIGH_Z_TOP_Y]->(c:Item),

892 (a:Item)-[q:R_HIGH_Z_TOP_Y]->(c:Item)

893 WHERE

894 id(a) <> id(b)

895 AND id(a) <> id(c)

896 AND id(b) <> id(c)

897 DELETE

898 q;

899 // Relation: R_HIGH_Z_MID_Y

900 MATCH

901 (a:Item),

902 (b:Item)

903 WHERE

904 id(a) <> id(b)

905 AND a.pallet_id = b.pallet_id

906 AND a.leftmost_point > b.rightmost_point

907 AND a.lowest_point < b.highest_point

908 AND a.lowest_point >= b.lowest_point

909 AND a.highest_point > b.highest_point

910 AND a.frontmost_point < b.frontmost_point

Knowledge Graphs for Improving Robot Operations in Logistics 105

A.4 Queries A APPENDICES

911 AND a.backmost_point > b.frontmost_point

912 AND a.backmost_point <= b.backmost_point

913 MERGE

914 (a)-[r:R_HIGH_Z_MID_Y]->(b);

915

916

917 // Relation: R_HIGH_Z_MID_Y remove extra

918 MATCH

919 (a:Item)-[r:R_HIGH_Z_MID_Y]->(b:Item)-[t:R_HIGH_Z_MID_Y]->(c:Item),

920 (a:Item)-[q:R_HIGH_Z_MID_Y]->(c:Item)

921 WHERE

922 id(a) <> id(b)

923 AND id(a) <> id(c)

924 AND id(b) <> id(c)

925 DELETE

926 q;

927 // Relation: R_HIGH_Z_BOT_Y

928 MATCH

929 (a:Item),

930 (b:Item)

931 WHERE

932 id(a) <> id(b)

933 AND a.pallet_id = b.pallet_id

934 AND a.leftmost_point > b.rightmost_point

935 AND a.lowest_point < b.highest_point

936 AND a.lowest_point >= b.lowest_point

937 AND a.highest_point > b.highest_point

938 AND a.backmost_point > b.backmost_point

939 AND a.frontmost_point < b.frontmost_point

940 MERGE

941 (a)-[r:R_HIGH_Z_BOT_Y]->(b);

942

943

944 // Relation: R_HIGH_Z_BOT_Y remove extra

945 MATCH

946 (a:Item)-[r:R_HIGH_Z_BOT_Y]->(b:Item)-[t:R_HIGH_Z_BOT_Y]->(c:Item),

947 (a:Item)-[q:R_HIGH_Z_BOT_Y]->(c:Item)

948 WHERE

949 id(a) <> id(b)

950 AND id(a) <> id(c)

951 AND id(b) <> id(c)

952 DELETE

953 q;

954 // Relation: R_HIGH_Z_BIG_Y

955 MATCH

956 (a:Item),

957 (b:Item)

958 WHERE

959 id(a) <> id(b)

960 AND a.pallet_id = b.pallet_id

961 AND a.leftmost_point > b.rightmost_point

962 AND a.lowest_point < b.highest_point

963 AND a.lowest_point >= b.lowest_point

964 AND a.highest_point > b.highest_point

965 AND a.backmost_point <= b.backmost_point

966 AND a.frontmost_point >= b.frontmost_point

106 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

967 MERGE

968 (a)-[r:R_HIGH_Z_BIG_Y]->(b);

969

970

971 // Relation: R_HIGH_Z_BIG_Y remove extra

972 MATCH

973 (a:Item)-[r:R_HIGH_Z_BIG_Y]->(b:Item)-[t:R_HIGH_Z_BIG_Y]->(c:Item),

974 (a:Item)-[q:R_HIGH_Z_BIG_Y]->(c:Item)

975 WHERE

976 id(a) <> id(b)

977 AND id(a) <> id(c)

978 AND id(b) <> id(c)

979 DELETE

980 q;

981 // Relation: R_LOW_Z_TOP_Y

982 MATCH

983 (a:Item),

984 (b:Item)

985 WHERE

986 id(a) <> id(b)

987 AND a.pallet_id = b.pallet_id

988 AND a.leftmost_point > b.rightmost_point

989 AND a.lowest_point < b.lowest_point

990 AND a.highest_point > b.lowest_point

991 AND a.highest_point <= b.highest_point

992 AND a.frontmost_point < b.backmost_point

993 AND a.frontmost_point >= b.frontmost_point

994 AND a.backmost_point > b.backmost_point

995 MERGE

996 (a)-[r:R_LOW_Z_TOP_Y]->(b);

997

998

999 // Relation: R_LOW_Z_TOP_Y remove extra

1000 MATCH

1001 (a:Item)-[r:R_LOW_Z_TOP_Y]->(b:Item)-[t:R_LOW_Z_TOP_Y]->(c:Item),

1002 (a:Item)-[q:R_LOW_Z_TOP_Y]->(c:Item)

1003 WHERE

1004 id(a) <> id(b)

1005 AND id(a) <> id(c)

1006 AND id(b) <> id(c)

1007 DELETE

1008 q;

1009 // Relation: R_LOW_Z_MID_Y

1010 MATCH

1011 (a:Item),

1012 (b:Item)

1013 WHERE

1014 id(a) <> id(b)

1015 AND a.pallet_id = b.pallet_id

1016 AND a.leftmost_point > b.rightmost_point

1017 AND a.lowest_point < b.lowest_point

1018 AND a.highest_point > b.lowest_point

1019 AND a.highest_point <= b.highest_point

1020 AND a.frontmost_point < b.frontmost_point

1021 AND a.backmost_point > b.frontmost_point

1022 AND a.backmost_point <= b.backmost_point

Knowledge Graphs for Improving Robot Operations in Logistics 107

A.4 Queries A APPENDICES

1023 MERGE

1024 (a)-[r:R_LOW_Z_MID_Y]->(b);

1025

1026

1027 // Relation: R_LOW_Z_MID_Y remove extra

1028 MATCH

1029 (a:Item)-[r:R_LOW_Z_MID_Y]->(b:Item)-[t:R_LOW_Z_MID_Y]->(c:Item),

1030 (a:Item)-[q:R_LOW_Z_MID_Y]->(c:Item)

1031 WHERE

1032 id(a) <> id(b)

1033 AND id(a) <> id(c)

1034 AND id(b) <> id(c)

1035 DELETE

1036 q;

1037 // Relation: R_LOW_Z_BOT_Y

1038 MATCH

1039 (a:Item),

1040 (b:Item)

1041 WHERE

1042 id(a) <> id(b)

1043 AND a.pallet_id = b.pallet_id

1044 AND a.leftmost_point > b.rightmost_point

1045 AND a.lowest_point < b.lowest_point

1046 AND a.highest_point > b.lowest_point

1047 AND a.highest_point <= b.highest_point

1048 AND a.backmost_point > b.backmost_point

1049 AND a.frontmost_point < b.frontmost_point

1050 MERGE

1051 (a)-[r:R_LOW_Z_BOT_Y]->(b);

1052

1053

1054 // Relation: R_LOW_Z_BOT_Y remove extra

1055 MATCH

1056 (a:Item)-[r:R_LOW_Z_BOT_Y]->(b:Item)-[t:R_LOW_Z_BOT_Y]->(c:Item),

1057 (a:Item)-[q:R_LOW_Z_BOT_Y]->(c:Item)

1058 WHERE

1059 id(a) <> id(b)

1060 AND id(a) <> id(c)

1061 AND id(b) <> id(c)

1062 DELETE

1063 q;

1064 // Relation: R_LOW_Z_BIG_Y

1065 MATCH

1066 (a:Item),

1067 (b:Item)

1068 WHERE

1069 id(a) <> id(b)

1070 AND a.pallet_id = b.pallet_id

1071 AND a.leftmost_point > b.rightmost_point

1072 AND a.lowest_point < b.lowest_point

1073 AND a.highest_point > b.lowest_point

1074 AND a.highest_point <= b.highest_point

1075 AND a.backmost_point <= b.backmost_point

1076 AND a.frontmost_point >= b.frontmost_point

1077 MERGE

1078 (a)-[r:R_LOW_Z_BIG_Y]->(b);

108 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1079

1080

1081 // Relation: R_LOW_Z_BIG_Y remove extra

1082 MATCH

1083 (a:Item)-[r:R_LOW_Z_BIG_Y]->(b:Item)-[t:R_LOW_Z_BIG_Y]->(c:Item),

1084 (a:Item)-[q:R_LOW_Z_BIG_Y]->(c:Item)

1085 WHERE

1086 id(a) <> id(b)

1087 AND id(a) <> id(c)

1088 AND id(b) <> id(c)

1089 DELETE

1090 q;

1091 // Relation: R_BIG_Z_TOP_Y

1092 MATCH

1093 (a:Item),

1094 (b:Item)

1095 WHERE

1096 id(a) <> id(b)

1097 AND a.pallet_id = b.pallet_id

1098 AND a.leftmost_point > b.rightmost_point

1099 AND a.highest_point > b.highest_point

1100 AND a.lowest_point < b.lowest_point

1101 AND a.frontmost_point < b.backmost_point

1102 AND a.frontmost_point >= b.frontmost_point

1103 AND a.backmost_point > b.backmost_point

1104 MERGE

1105 (a)-[r:R_BIG_Z_TOP_Y]->(b);

1106

1107

1108 // Relation: R_BIG_Z_TOP_Y remove extra

1109 MATCH

1110 (a:Item)-[r:R_BIG_Z_TOP_Y]->(b:Item)-[t:R_BIG_Z_TOP_Y]->(c:Item),

1111 (a:Item)-[q:R_BIG_Z_TOP_Y]->(c:Item)

1112 WHERE

1113 id(a) <> id(b)

1114 AND id(a) <> id(c)

1115 AND id(b) <> id(c)

1116 DELETE

1117 q;

1118 // Relation: R_BIG_Z_MID_Y

1119 MATCH

1120 (a:Item),

1121 (b:Item)

1122 WHERE

1123 id(a) <> id(b)

1124 AND a.pallet_id = b.pallet_id

1125 AND a.leftmost_point > b.rightmost_point

1126 AND a.highest_point > b.highest_point

1127 AND a.lowest_point < b.lowest_point

1128 AND a.frontmost_point < b.frontmost_point

1129 AND a.backmost_point > b.frontmost_point

1130 AND a.backmost_point <= b.backmost_point

1131 MERGE

1132 (a)-[r:R_BIG_Z_MID_Y]->(b);

1133

1134

Knowledge Graphs for Improving Robot Operations in Logistics 109

A.4 Queries A APPENDICES

1135 // Relation: R_BIG_Z_MID_Y remove extra

1136 MATCH

1137 (a:Item)-[r:R_BIG_Z_MID_Y]->(b:Item)-[t:R_BIG_Z_MID_Y]->(c:Item),

1138 (a:Item)-[q:R_BIG_Z_MID_Y]->(c:Item)

1139 WHERE

1140 id(a) <> id(b)

1141 AND id(a) <> id(c)

1142 AND id(b) <> id(c)

1143 DELETE

1144 q;

1145 // Relation: R_BIG_Z_BOT_Y

1146 MATCH

1147 (a:Item),

1148 (b:Item)

1149 WHERE

1150 id(a) <> id(b)

1151 AND a.pallet_id = b.pallet_id

1152 AND a.leftmost_point > b.rightmost_point

1153 AND a.highest_point > b.highest_point

1154 AND a.lowest_point < b.lowest_point

1155 AND a.backmost_point > b.backmost_point

1156 AND a.frontmost_point < b.frontmost_point

1157 MERGE

1158 (a)-[r:R_BIG_Z_BOT_Y]->(b);

1159

1160

1161 // Relation: R_BIG_Z_BOT_Y remove extra

1162 MATCH

1163 (a:Item)-[r:R_BIG_Z_BOT_Y]->(b:Item)-[t:R_BIG_Z_BOT_Y]->(c:Item),

1164 (a:Item)-[q:R_BIG_Z_BOT_Y]->(c:Item)

1165 WHERE

1166 id(a) <> id(b)

1167 AND id(a) <> id(c)

1168 AND id(b) <> id(c)

1169 DELETE

1170 q;

1171 // Relation: R_BIG_Z_BIG_Y

1172 MATCH

1173 (a:Item),

1174 (b:Item)

1175 WHERE

1176 id(a) <> id(b)

1177 AND a.pallet_id = b.pallet_id

1178 AND a.leftmost_point > b.rightmost_point

1179 AND a.highest_point > b.highest_point

1180 AND a.lowest_point < b.lowest_point

1181 AND a.backmost_point <= b.backmost_point

1182 AND a.frontmost_point >= b.frontmost_point

1183 MERGE

1184 (a)-[r:R_BIG_Z_BIG_Y]->(b);

1185

1186

1187 // Relation: R_BIG_Z_BIG_Y remove extra

1188 MATCH

1189 (a:Item)-[r:R_BIG_Z_BIG_Y]->(b:Item)-[t:R_BIG_Z_BIG_Y]->(c:Item),

1190 (a:Item)-[q:R_BIG_Z_BIG_Y]->(c:Item)

110 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1191 WHERE

1192 id(a) <> id(b)

1193 AND id(a) <> id(c)

1194 AND id(b) <> id(c)

1195 DELETE

1196 q;

1197 // Relation: R_SMALL_Z_TOP_Y

1198 MATCH

1199 (a:Item),

1200 (b:Item)

1201 WHERE

1202 id(a) <> id(b)

1203 AND a.pallet_id = b.pallet_id

1204 AND a.leftmost_point > b.rightmost_point

1205 AND a.highest_point <= b.highest_point

1206 AND a.lowest_point >= b.lowest_point

1207 AND a.frontmost_point < b.backmost_point

1208 AND a.frontmost_point >= b.frontmost_point

1209 AND a.backmost_point > b.backmost_point

1210 MERGE

1211 (a)-[r:R_SMALL_Z_TOP_Y]->(b);

1212

1213

1214 // Relation: R_SMALL_Z_TOP_Y remove extra

1215 MATCH

1216 (a:Item)-[r:R_SMALL_Z_TOP_Y]->(b:Item)-[t:R_SMALL_Z_TOP_Y]->(c:Item),

1217 (a:Item)-[q:R_SMALL_Z_TOP_Y]->(c:Item)

1218 WHERE

1219 id(a) <> id(b)

1220 AND id(a) <> id(c)

1221 AND id(b) <> id(c)

1222 DELETE

1223 q;

1224 // Relation: R_SMALL_Z_MID_Y

1225 MATCH

1226 (a:Item),

1227 (b:Item)

1228 WHERE

1229 id(a) <> id(b)

1230 AND a.pallet_id = b.pallet_id

1231 AND a.leftmost_point > b.rightmost_point

1232 AND a.highest_point <= b.highest_point

1233 AND a.lowest_point >= b.lowest_point

1234 AND a.frontmost_point < b.frontmost_point

1235 AND a.backmost_point > b.frontmost_point

1236 AND a.backmost_point <= b.backmost_point

1237 MERGE

1238 (a)-[r:R_SMALL_Z_MID_Y]->(b);

1239

1240

1241 // Relation: R_SMALL_Z_MID_Y remove extra

1242 MATCH

1243 (a:Item)-[r:R_SMALL_Z_MID_Y]->(b:Item)-[t:R_SMALL_Z_MID_Y]->(c:Item),

1244 (a:Item)-[q:R_SMALL_Z_MID_Y]->(c:Item)

1245 WHERE

1246 id(a) <> id(b)

Knowledge Graphs for Improving Robot Operations in Logistics 111

A.4 Queries A APPENDICES

1247 AND id(a) <> id(c)

1248 AND id(b) <> id(c)

1249 DELETE

1250 q;

1251 // Relation: R_SMALL_Z_BOT_Y

1252 MATCH

1253 (a:Item),

1254 (b:Item)

1255 WHERE

1256 id(a) <> id(b)

1257 AND a.pallet_id = b.pallet_id

1258 AND a.leftmost_point > b.rightmost_point

1259 AND a.highest_point <= b.highest_point

1260 AND a.lowest_point >= b.lowest_point

1261 AND a.backmost_point > b.backmost_point

1262 AND a.frontmost_point < b.frontmost_point

1263 MERGE

1264 (a)-[r:R_SMALL_Z_BOT_Y]->(b);

1265

1266

1267 // Relation: R_SMALL_Z_BOT_Y remove extra

1268 MATCH

1269 (a:Item)-[r:R_SMALL_Z_BOT_Y]->(b:Item)-[t:R_SMALL_Z_BOT_Y]->(c:Item),

1270 (a:Item)-[q:R_SMALL_Z_BOT_Y]->(c:Item)

1271 WHERE

1272 id(a) <> id(b)

1273 AND id(a) <> id(c)

1274 AND id(b) <> id(c)

1275 DELETE

1276 q;

1277 // Relation: R_SMALL_Z_BIG_Y

1278 MATCH

1279 (a:Item),

1280 (b:Item)

1281 WHERE

1282 id(a) <> id(b)

1283 AND a.pallet_id = b.pallet_id

1284 AND a.leftmost_point > b.rightmost_point

1285 AND a.highest_point <= b.highest_point

1286 AND a.lowest_point >= b.lowest_point

1287 AND a.backmost_point <= b.backmost_point

1288 AND a.frontmost_point >= b.frontmost_point

1289 MERGE

1290 (a)-[r:R_SMALL_Z_BIG_Y]->(b);

1291

1292

1293 // Relation: R_SMALL_Z_BIG_Y remove extra

1294 MATCH

1295 (a:Item)-[r:R_SMALL_Z_BIG_Y]->(b:Item)-[t:R_SMALL_Z_BIG_Y]->(c:Item),

1296 (a:Item)-[q:R_SMALL_Z_BIG_Y]->(c:Item)

1297 WHERE

1298 id(a) <> id(b)

1299 AND id(a) <> id(c)

1300 AND id(b) <> id(c)

1301 DELETE

1302 q;

112 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1303 // Relation: B_HIGH_Z_LEFT_X

1304 MATCH

1305 (a:Item),

1306 (b:Item)

1307 WHERE

1308 id(a) <> id(b)

1309 AND a.pallet_id = b.pallet_id

1310 AND a.frontmost_point > b.backmost_point

1311 AND a.lowest_point < b.highest_point

1312 AND a.lowest_point >= b.lowest_point

1313 AND a.highest_point > b.highest_point

1314 AND a.leftmost_point < b.rightmost_point

1315 AND a.leftmost_point >= b.leftmost_point

1316 AND a.rightmost_point > b.rightmost_point

1317 MERGE

1318 (a)-[r:B_HIGH_Z_LEFT_X]->(b);

1319

1320

1321 // Relation: B_HIGH_Z_LEFT_X remove extra

1322 MATCH

1323 (a:Item)-[r:B_HIGH_Z_LEFT_X]->(b:Item)-[t:B_HIGH_Z_LEFT_X]->(c:Item),

1324 (a:Item)-[q:B_HIGH_Z_LEFT_X]->(c:Item)

1325 WHERE

1326 id(a) <> id(b)

1327 AND id(a) <> id(c)

1328 AND id(b) <> id(c)

1329 DELETE

1330 q;

1331 // Relation: B_HIGH_Z_MID_X

1332 MATCH

1333 (a:Item),

1334 (b:Item)

1335 WHERE

1336 id(a) <> id(b)

1337 AND a.pallet_id = b.pallet_id

1338 AND a.frontmost_point > b.backmost_point

1339 AND a.lowest_point < b.highest_point

1340 AND a.lowest_point >= b.lowest_point

1341 AND a.highest_point > b.highest_point

1342 AND a.leftmost_point < b.leftmost_point

1343 AND a.rightmost_point > b.leftmost_point

1344 AND a.rightmost_point <= b.rightmost_point

1345 MERGE

1346 (a)-[r:B_HIGH_Z_MID_X]->(b);

1347

1348

1349 // Relation: B_HIGH_Z_MID_X remove extra

1350 MATCH

1351 (a:Item)-[r:B_HIGH_Z_MID_X]->(b:Item)-[t:B_HIGH_Z_MID_X]->(c:Item),

1352 (a:Item)-[q:B_HIGH_Z_MID_X]->(c:Item)

1353 WHERE

1354 id(a) <> id(b)

1355 AND id(a) <> id(c)

1356 AND id(b) <> id(c)

1357 DELETE

1358 q;

Knowledge Graphs for Improving Robot Operations in Logistics 113

A.4 Queries A APPENDICES

1359 // Relation: B_HIGH_Z_RIGHT_X

1360 MATCH

1361 (a:Item),

1362 (b:Item)

1363 WHERE

1364 id(a) <> id(b)

1365 AND a.pallet_id = b.pallet_id

1366 AND a.frontmost_point > b.backmost_point

1367 AND a.lowest_point < b.highest_point

1368 AND a.lowest_point >= b.lowest_point

1369 AND a.highest_point > b.highest_point

1370 AND a.rightmost_point > b.rightmost_point

1371 AND a.leftmost_point < b.leftmost_point

1372 MERGE

1373 (a)-[r:B_HIGH_Z_RIGHT_X]->(b);

1374

1375

1376 // Relation: B_HIGH_Z_RIGHT_X remove extra

1377 MATCH

1378 (a:Item)-[r:B_HIGH_Z_RIGHT_X]->(b:Item)-[t:B_HIGH_Z_RIGHT_X]->(c:Item),

1379 (a:Item)-[q:B_HIGH_Z_RIGHT_X]->(c:Item)

1380 WHERE

1381 id(a) <> id(b)

1382 AND id(a) <> id(c)

1383 AND id(b) <> id(c)

1384 DELETE

1385 q;

1386 // Relation: B_HIGH_Z_LONG_X

1387 MATCH

1388 (a:Item),

1389 (b:Item)

1390 WHERE

1391 id(a) <> id(b)

1392 AND a.pallet_id = b.pallet_id

1393 AND a.frontmost_point > b.backmost_point

1394 AND a.lowest_point < b.highest_point

1395 AND a.lowest_point >= b.lowest_point

1396 AND a.highest_point > b.highest_point

1397 AND a.rightmost_point <= b.rightmost_point

1398 AND a.leftmost_point >= b.leftmost_point

1399 MERGE

1400 (a)-[r:B_HIGH_Z_LONG_X]->(b);

1401

1402

1403 // Relation: B_HIGH_Z_LONG_X remove extra

1404 MATCH

1405 (a:Item)-[r:B_HIGH_Z_LONG_X]->(b:Item)-[t:B_HIGH_Z_LONG_X]->(c:Item),

1406 (a:Item)-[q:B_HIGH_Z_LONG_X]->(c:Item)

1407 WHERE

1408 id(a) <> id(b)

1409 AND id(a) <> id(c)

1410 AND id(b) <> id(c)

1411 DELETE

1412 q;

1413 // Relation: B_LOW_Z_LEFT_X

1414 MATCH

114 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1415 (a:Item),

1416 (b:Item)

1417 WHERE

1418 id(a) <> id(b)

1419 AND a.pallet_id = b.pallet_id

1420 AND a.frontmost_point > b.backmost_point

1421 AND a.lowest_point < b.lowest_point

1422 AND a.highest_point > b.lowest_point

1423 AND a.highest_point <= b.highest_point

1424 AND a.leftmost_point < b.rightmost_point

1425 AND a.leftmost_point >= b.leftmost_point

1426 AND a.rightmost_point > b.rightmost_point

1427 MERGE

1428 (a)-[r:B_LOW_Z_LEFT_X]->(b);

1429

1430

1431 // Relation: B_LOW_Z_LEFT_X remove extra

1432 MATCH

1433 (a:Item)-[r:B_LOW_Z_LEFT_X]->(b:Item)-[t:B_LOW_Z_LEFT_X]->(c:Item),

1434 (a:Item)-[q:B_LOW_Z_LEFT_X]->(c:Item)

1435 WHERE

1436 id(a) <> id(b)

1437 AND id(a) <> id(c)

1438 AND id(b) <> id(c)

1439 DELETE

1440 q;

1441 // Relation: B_LOW_Z_MID_X

1442 MATCH

1443 (a:Item),

1444 (b:Item)

1445 WHERE

1446 id(a) <> id(b)

1447 AND a.pallet_id = b.pallet_id

1448 AND a.frontmost_point > b.backmost_point

1449 AND a.lowest_point < b.lowest_point

1450 AND a.highest_point > b.lowest_point

1451 AND a.highest_point <= b.highest_point

1452 AND a.leftmost_point < b.leftmost_point

1453 AND a.rightmost_point > b.leftmost_point

1454 AND a.rightmost_point <= b.rightmost_point

1455 MERGE

1456 (a)-[r:B_LOW_Z_MID_X]->(b);

1457

1458

1459 // Relation: B_LOW_Z_MID_X remove extra

1460 MATCH

1461 (a:Item)-[r:B_LOW_Z_MID_X]->(b:Item)-[t:B_LOW_Z_MID_X]->(c:Item),

1462 (a:Item)-[q:B_LOW_Z_MID_X]->(c:Item)

1463 WHERE

1464 id(a) <> id(b)

1465 AND id(a) <> id(c)

1466 AND id(b) <> id(c)

1467 DELETE

1468 q;

1469 // Relation: B_LOW_Z_RIGHT_X

1470 MATCH

Knowledge Graphs for Improving Robot Operations in Logistics 115

A.4 Queries A APPENDICES

1471 (a:Item),

1472 (b:Item)

1473 WHERE

1474 id(a) <> id(b)

1475 AND a.pallet_id = b.pallet_id

1476 AND a.frontmost_point > b.backmost_point

1477 AND a.lowest_point < b.lowest_point

1478 AND a.highest_point > b.lowest_point

1479 AND a.highest_point <= b.highest_point

1480 AND a.rightmost_point > b.rightmost_point

1481 AND a.leftmost_point < b.leftmost_point

1482 MERGE

1483 (a)-[r:B_LOW_Z_RIGHT_X]->(b);

1484

1485

1486 // Relation: B_LOW_Z_RIGHT_X remove extra

1487 MATCH

1488 (a:Item)-[r:B_LOW_Z_RIGHT_X]->(b:Item)-[t:B_LOW_Z_RIGHT_X]->(c:Item),

1489 (a:Item)-[q:B_LOW_Z_RIGHT_X]->(c:Item)

1490 WHERE

1491 id(a) <> id(b)

1492 AND id(a) <> id(c)

1493 AND id(b) <> id(c)

1494 DELETE

1495 q;

1496 // Relation: B_LOW_Z_LONG_X

1497 MATCH

1498 (a:Item),

1499 (b:Item)

1500 WHERE

1501 id(a) <> id(b)

1502 AND a.pallet_id = b.pallet_id

1503 AND a.frontmost_point > b.backmost_point

1504 AND a.lowest_point < b.lowest_point

1505 AND a.highest_point > b.lowest_point

1506 AND a.highest_point <= b.highest_point

1507 AND a.rightmost_point <= b.rightmost_point

1508 AND a.leftmost_point >= b.leftmost_point

1509 MERGE

1510 (a)-[r:B_LOW_Z_LONG_X]->(b);

1511

1512

1513 // Relation: B_LOW_Z_LONG_X remove extra

1514 MATCH

1515 (a:Item)-[r:B_LOW_Z_LONG_X]->(b:Item)-[t:B_LOW_Z_LONG_X]->(c:Item),

1516 (a:Item)-[q:B_LOW_Z_LONG_X]->(c:Item)

1517 WHERE

1518 id(a) <> id(b)

1519 AND id(a) <> id(c)

1520 AND id(b) <> id(c)

1521 DELETE

1522 q;

1523 // Relation: B_BIG_Z_LEFT_X

1524 MATCH

1525 (a:Item),

1526 (b:Item)

116 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1527 WHERE

1528 id(a) <> id(b)

1529 AND a.pallet_id = b.pallet_id

1530 AND a.frontmost_point > b.backmost_point

1531 AND a.highest_point > b.highest_point

1532 AND a.lowest_point < b.lowest_point

1533 AND a.leftmost_point < b.rightmost_point

1534 AND a.leftmost_point >= b.leftmost_point

1535 AND a.rightmost_point > b.rightmost_point

1536 MERGE

1537 (a)-[r:B_BIG_Z_LEFT_X]->(b);

1538

1539

1540 // Relation: B_BIG_Z_LEFT_X remove extra

1541 MATCH

1542 (a:Item)-[r:B_BIG_Z_LEFT_X]->(b:Item)-[t:B_BIG_Z_LEFT_X]->(c:Item),

1543 (a:Item)-[q:B_BIG_Z_LEFT_X]->(c:Item)

1544 WHERE

1545 id(a) <> id(b)

1546 AND id(a) <> id(c)

1547 AND id(b) <> id(c)

1548 DELETE

1549 q;

1550 // Relation: B_BIG_Z_MID_X

1551 MATCH

1552 (a:Item),

1553 (b:Item)

1554 WHERE

1555 id(a) <> id(b)

1556 AND a.pallet_id = b.pallet_id

1557 AND a.frontmost_point > b.backmost_point

1558 AND a.highest_point > b.highest_point

1559 AND a.lowest_point < b.lowest_point

1560 AND a.leftmost_point < b.leftmost_point

1561 AND a.rightmost_point > b.leftmost_point

1562 AND a.rightmost_point <= b.rightmost_point

1563 MERGE

1564 (a)-[r:B_BIG_Z_MID_X]->(b);

1565

1566

1567 // Relation: B_BIG_Z_MID_X remove extra

1568 MATCH

1569 (a:Item)-[r:B_BIG_Z_MID_X]->(b:Item)-[t:B_BIG_Z_MID_X]->(c:Item),

1570 (a:Item)-[q:B_BIG_Z_MID_X]->(c:Item)

1571 WHERE

1572 id(a) <> id(b)

1573 AND id(a) <> id(c)

1574 AND id(b) <> id(c)

1575 DELETE

1576 q;

1577 // Relation: B_BIG_Z_RIGHT_X

1578 MATCH

1579 (a:Item),

1580 (b:Item)

1581 WHERE

1582 id(a) <> id(b)

Knowledge Graphs for Improving Robot Operations in Logistics 117

A.4 Queries A APPENDICES

1583 AND a.pallet_id = b.pallet_id

1584 AND a.frontmost_point > b.backmost_point

1585 AND a.highest_point > b.highest_point

1586 AND a.lowest_point < b.lowest_point

1587 AND a.rightmost_point > b.rightmost_point

1588 AND a.leftmost_point < b.leftmost_point

1589 MERGE

1590 (a)-[r:B_BIG_Z_RIGHT_X]->(b);

1591

1592

1593 // Relation: B_BIG_Z_RIGHT_X remove extra

1594 MATCH

1595 (a:Item)-[r:B_BIG_Z_RIGHT_X]->(b:Item)-[t:B_BIG_Z_RIGHT_X]->(c:Item),

1596 (a:Item)-[q:B_BIG_Z_RIGHT_X]->(c:Item)

1597 WHERE

1598 id(a) <> id(b)

1599 AND id(a) <> id(c)

1600 AND id(b) <> id(c)

1601 DELETE

1602 q;

1603 // Relation: B_BIG_Z_LONG_X

1604 MATCH

1605 (a:Item),

1606 (b:Item)

1607 WHERE

1608 id(a) <> id(b)

1609 AND a.pallet_id = b.pallet_id

1610 AND a.frontmost_point > b.backmost_point

1611 AND a.highest_point > b.highest_point

1612 AND a.lowest_point < b.lowest_point

1613 AND a.rightmost_point <= b.rightmost_point

1614 AND a.leftmost_point >= b.leftmost_point

1615 MERGE

1616 (a)-[r:B_BIG_Z_LONG_X]->(b);

1617

1618

1619 // Relation: B_BIG_Z_LONG_X remove extra

1620 MATCH

1621 (a:Item)-[r:B_BIG_Z_LONG_X]->(b:Item)-[t:B_BIG_Z_LONG_X]->(c:Item),

1622 (a:Item)-[q:B_BIG_Z_LONG_X]->(c:Item)

1623 WHERE

1624 id(a) <> id(b)

1625 AND id(a) <> id(c)

1626 AND id(b) <> id(c)

1627 DELETE

1628 q;

1629 // Relation: B_SMALL_Z_LEFT_X

1630 MATCH

1631 (a:Item),

1632 (b:Item)

1633 WHERE

1634 id(a) <> id(b)

1635 AND a.pallet_id = b.pallet_id

1636 AND a.frontmost_point > b.backmost_point

1637 AND a.highest_point <= b.highest_point

1638 AND a.lowest_point >= b.lowest_point

118 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1639 AND a.leftmost_point < b.rightmost_point

1640 AND a.leftmost_point >= b.leftmost_point

1641 AND a.rightmost_point > b.rightmost_point

1642 MERGE

1643 (a)-[r:B_SMALL_Z_LEFT_X]->(b);

1644

1645

1646 // Relation: B_SMALL_Z_LEFT_X remove extra

1647 MATCH

1648 (a:Item)-[r:B_SMALL_Z_LEFT_X]->(b:Item)-[t:B_SMALL_Z_LEFT_X]->(c:Item),

1649 (a:Item)-[q:B_SMALL_Z_LEFT_X]->(c:Item)

1650 WHERE

1651 id(a) <> id(b)

1652 AND id(a) <> id(c)

1653 AND id(b) <> id(c)

1654 DELETE

1655 q;

1656 // Relation: B_SMALL_Z_MID_X

1657 MATCH

1658 (a:Item),

1659 (b:Item)

1660 WHERE

1661 id(a) <> id(b)

1662 AND a.pallet_id = b.pallet_id

1663 AND a.frontmost_point > b.backmost_point

1664 AND a.highest_point <= b.highest_point

1665 AND a.lowest_point >= b.lowest_point

1666 AND a.leftmost_point < b.leftmost_point

1667 AND a.rightmost_point > b.leftmost_point

1668 AND a.rightmost_point <= b.rightmost_point

1669 MERGE

1670 (a)-[r:B_SMALL_Z_MID_X]->(b);

1671

1672

1673 // Relation: B_SMALL_Z_MID_X remove extra

1674 MATCH

1675 (a:Item)-[r:B_SMALL_Z_MID_X]->(b:Item)-[t:B_SMALL_Z_MID_X]->(c:Item),

1676 (a:Item)-[q:B_SMALL_Z_MID_X]->(c:Item)

1677 WHERE

1678 id(a) <> id(b)

1679 AND id(a) <> id(c)

1680 AND id(b) <> id(c)

1681 DELETE

1682 q;

1683 // Relation: B_SMALL_Z_RIGHT_X

1684 MATCH

1685 (a:Item),

1686 (b:Item)

1687 WHERE

1688 id(a) <> id(b)

1689 AND a.pallet_id = b.pallet_id

1690 AND a.frontmost_point > b.backmost_point

1691 AND a.highest_point <= b.highest_point

1692 AND a.lowest_point >= b.lowest_point

1693 AND a.rightmost_point > b.rightmost_point

1694 AND a.leftmost_point < b.leftmost_point

Knowledge Graphs for Improving Robot Operations in Logistics 119

A.4 Queries A APPENDICES

1695 MERGE

1696 (a)-[r:B_SMALL_Z_RIGHT_X]->(b);

1697

1698

1699 // Relation: B_SMALL_Z_RIGHT_X remove extra

1700 MATCH

1701 (a:Item)-[r:B_SMALL_Z_RIGHT_X]->(b:Item)-[t:B_SMALL_Z_RIGHT_X]->(c:Item),

1702 (a:Item)-[q:B_SMALL_Z_RIGHT_X]->(c:Item)

1703 WHERE

1704 id(a) <> id(b)

1705 AND id(a) <> id(c)

1706 AND id(b) <> id(c)

1707 DELETE

1708 q;

1709 // Relation: B_SMALL_Z_LONG_X

1710 MATCH

1711 (a:Item),

1712 (b:Item)

1713 WHERE

1714 id(a) <> id(b)

1715 AND a.pallet_id = b.pallet_id

1716 AND a.frontmost_point > b.backmost_point

1717 AND a.highest_point <= b.highest_point

1718 AND a.lowest_point >= b.lowest_point

1719 AND a.rightmost_point <= b.rightmost_point

1720 AND a.leftmost_point >= b.leftmost_point

1721 MERGE

1722 (a)-[r:B_SMALL_Z_LONG_X]->(b);

1723

1724

1725 // Relation: B_SMALL_Z_LONG_X remove extra

1726 MATCH

1727 (a:Item)-[r:B_SMALL_Z_LONG_X]->(b:Item)-[t:B_SMALL_Z_LONG_X]->(c:Item),

1728 (a:Item)-[q:B_SMALL_Z_LONG_X]->(c:Item)

1729 WHERE

1730 id(a) <> id(b)

1731 AND id(a) <> id(c)

1732 AND id(b) <> id(c)

1733 DELETE

1734 q;

1735 // Relation: NEXT_TO { reason }

1736 MATCH

1737 (a:Item) -[:L_HIGH_Z_TOP_Y]->(b:Item)

1738 WHERE

1739 id(a) <> id(b)

1740 CREATE

1741 (a)-[:NEXT_TO {reason: "L_HIGH_Z_TOP_Y"}]->(b);

1742 MATCH

1743 (a:Item) -[:L_HIGH_Z_MID_Y]->(b:Item)

1744 WHERE

1745 id(a) <> id(b)

1746 CREATE

1747 (a)-[:NEXT_TO {reason: "L_HIGH_Z_MID_Y"}]->(b);

1748 MATCH

1749 (a:Item) -[:L_HIGH_Z_BOT_Y]->(b:Item)

1750 WHERE

120 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1751 id(a) <> id(b)

1752 CREATE

1753 (a)-[:NEXT_TO {reason: "L_HIGH_Z_BOT_Y"}]->(b);

1754 MATCH

1755 (a:Item) -[:L_HIGH_Z_BIG_Y]->(b:Item)

1756 WHERE

1757 id(a) <> id(b)

1758 CREATE

1759 (a)-[:NEXT_TO {reason: "L_HIGH_Z_BIG_Y"}]->(b);

1760 MATCH

1761 (a:Item) -[:L_LOW_Z_TOP_Y]->(b:Item)

1762 WHERE

1763 id(a) <> id(b)

1764 CREATE

1765 (a)-[:NEXT_TO {reason: "L_LOW_Z_TOP_Y"}]->(b);

1766 MATCH

1767 (a:Item) -[:L_LOW_Z_MID_Y]->(b:Item)

1768 WHERE

1769 id(a) <> id(b)

1770 CREATE

1771 (a)-[:NEXT_TO {reason: "L_LOW_Z_MID_Y"}]->(b);

1772 MATCH

1773 (a:Item) -[:L_LOW_Z_BOT_Y]->(b:Item)

1774 WHERE

1775 id(a) <> id(b)

1776 CREATE

1777 (a)-[:NEXT_TO {reason: "L_LOW_Z_BOT_Y"}]->(b);

1778 MATCH

1779 (a:Item) -[:L_LOW_Z_BIG_Y]->(b:Item)

1780 WHERE

1781 id(a) <> id(b)

1782 CREATE

1783 (a)-[:NEXT_TO {reason: "L_LOW_Z_BIG_Y"}]->(b);

1784 MATCH

1785 (a:Item) -[:L_BIG_Z_TOP_Y]->(b:Item)

1786 WHERE

1787 id(a) <> id(b)

1788 CREATE

1789 (a)-[:NEXT_TO {reason: "L_BIG_Z_TOP_Y"}]->(b);

1790 MATCH

1791 (a:Item) -[:L_BIG_Z_MID_Y]->(b:Item)

1792 WHERE

1793 id(a) <> id(b)

1794 CREATE

1795 (a)-[:NEXT_TO {reason: "L_BIG_Z_MID_Y"}]->(b);

1796 MATCH

1797 (a:Item) -[:L_BIG_Z_BOT_Y]->(b:Item)

1798 WHERE

1799 id(a) <> id(b)

1800 CREATE

1801 (a)-[:NEXT_TO {reason: "L_BIG_Z_BOT_Y"}]->(b);

1802 MATCH

1803 (a:Item) -[:L_BIG_Z_BIG_Y]->(b:Item)

1804 WHERE

1805 id(a) <> id(b)

1806 CREATE

Knowledge Graphs for Improving Robot Operations in Logistics 121

A.4 Queries A APPENDICES

1807 (a)-[:NEXT_TO {reason: "L_BIG_Z_BIG_Y"}]->(b);

1808 MATCH

1809 (a:Item) -[:L_SMALL_Z_TOP_Y]->(b:Item)

1810 WHERE

1811 id(a) <> id(b)

1812 CREATE

1813 (a)-[:NEXT_TO {reason: "L_SMALL_Z_TOP_Y"}]->(b);

1814 MATCH

1815 (a:Item) -[:L_SMALL_Z_MID_Y]->(b:Item)

1816 WHERE

1817 id(a) <> id(b)

1818 CREATE

1819 (a)-[:NEXT_TO {reason: "L_SMALL_Z_MID_Y"}]->(b);

1820 MATCH

1821 (a:Item) -[:L_SMALL_Z_BOT_Y]->(b:Item)

1822 WHERE

1823 id(a) <> id(b)

1824 CREATE

1825 (a)-[:NEXT_TO {reason: "L_SMALL_Z_BOT_Y"}]->(b);

1826 MATCH

1827 (a:Item) -[:L_SMALL_Z_BIG_Y]->(b:Item)

1828 WHERE

1829 id(a) <> id(b)

1830 CREATE

1831 (a)-[:NEXT_TO {reason: "L_SMALL_Z_BIG_Y"}]->(b);

1832 MATCH

1833 (a:Item) -[:F_HIGH_Z_LEFT_X]->(b:Item)

1834 WHERE

1835 id(a) <> id(b)

1836 CREATE

1837 (a)-[:NEXT_TO {reason: "F_HIGH_Z_LEFT_X"}]->(b);

1838 MATCH

1839 (a:Item) -[:F_HIGH_Z_MID_X]->(b:Item)

1840 WHERE

1841 id(a) <> id(b)

1842 CREATE

1843 (a)-[:NEXT_TO {reason: "F_HIGH_Z_MID_X"}]->(b);

1844 MATCH

1845 (a:Item) -[:F_HIGH_Z_RIGHT_X]->(b:Item)

1846 WHERE

1847 id(a) <> id(b)

1848 CREATE

1849 (a)-[:NEXT_TO {reason: "F_HIGH_Z_RIGHT_X"}]->(b);

1850 MATCH

1851 (a:Item) -[:F_HIGH_Z_LONG_X]->(b:Item)

1852 WHERE

1853 id(a) <> id(b)

1854 CREATE

1855 (a)-[:NEXT_TO {reason: "F_HIGH_Z_LONG_X"}]->(b);

1856 MATCH

1857 (a:Item) -[:F_LOW_Z_LEFT_X]->(b:Item)

1858 WHERE

1859 id(a) <> id(b)

1860 CREATE

1861 (a)-[:NEXT_TO {reason: "F_LOW_Z_LEFT_X"}]->(b);

1862 MATCH

122 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1863 (a:Item) -[:F_LOW_Z_MID_X]->(b:Item)

1864 WHERE

1865 id(a) <> id(b)

1866 CREATE

1867 (a)-[:NEXT_TO {reason: "F_LOW_Z_MID_X"}]->(b);

1868 MATCH

1869 (a:Item) -[:F_LOW_Z_RIGHT_X]->(b:Item)

1870 WHERE

1871 id(a) <> id(b)

1872 CREATE

1873 (a)-[:NEXT_TO {reason: "F_LOW_Z_RIGHT_X"}]->(b);

1874 MATCH

1875 (a:Item) -[:F_LOW_Z_LONG_X]->(b:Item)

1876 WHERE

1877 id(a) <> id(b)

1878 CREATE

1879 (a)-[:NEXT_TO {reason: "F_LOW_Z_LONG_X"}]->(b);

1880 MATCH

1881 (a:Item) -[:F_BIG_Z_LEFT_X]->(b:Item)

1882 WHERE

1883 id(a) <> id(b)

1884 CREATE

1885 (a)-[:NEXT_TO {reason: "F_BIG_Z_LEFT_X"}]->(b);

1886 MATCH

1887 (a:Item) -[:F_BIG_Z_MID_X]->(b:Item)

1888 WHERE

1889 id(a) <> id(b)

1890 CREATE

1891 (a)-[:NEXT_TO {reason: "F_BIG_Z_MID_X"}]->(b);

1892 MATCH

1893 (a:Item) -[:F_BIG_Z_RIGHT_X]->(b:Item)

1894 WHERE

1895 id(a) <> id(b)

1896 CREATE

1897 (a)-[:NEXT_TO {reason: "F_BIG_Z_RIGHT_X"}]->(b);

1898 MATCH

1899 (a:Item) -[:F_BIG_Z_LONG_X]->(b:Item)

1900 WHERE

1901 id(a) <> id(b)

1902 CREATE

1903 (a)-[:NEXT_TO {reason: "F_BIG_Z_LONG_X"}]->(b);

1904 MATCH

1905 (a:Item) -[:F_SMALL_Z_LEFT_X]->(b:Item)

1906 WHERE

1907 id(a) <> id(b)

1908 CREATE

1909 (a)-[:NEXT_TO {reason: "F_SMALL_Z_LEFT_X"}]->(b);

1910 MATCH

1911 (a:Item) -[:F_SMALL_Z_MID_X]->(b:Item)

1912 WHERE

1913 id(a) <> id(b)

1914 CREATE

1915 (a)-[:NEXT_TO {reason: "F_SMALL_Z_MID_X"}]->(b);

1916 MATCH

1917 (a:Item) -[:F_SMALL_Z_RIGHT_X]->(b:Item)

1918 WHERE

Knowledge Graphs for Improving Robot Operations in Logistics 123

A.4 Queries A APPENDICES

1919 id(a) <> id(b)

1920 CREATE

1921 (a)-[:NEXT_TO {reason: "F_SMALL_Z_RIGHT_X"}]->(b);

1922 MATCH

1923 (a:Item) -[:F_SMALL_Z_LONG_X]->(b:Item)

1924 WHERE

1925 id(a) <> id(b)

1926 CREATE

1927 (a)-[:NEXT_TO {reason: "F_SMALL_Z_LONG_X"}]->(b);

1928 MATCH

1929 (a:Item) -[:R_HIGH_Z_TOP_Y]->(b:Item)

1930 WHERE

1931 id(a) <> id(b)

1932 CREATE

1933 (a)-[:NEXT_TO {reason: "R_HIGH_Z_TOP_Y"}]->(b);

1934 MATCH

1935 (a:Item) -[:R_HIGH_Z_MID_Y]->(b:Item)

1936 WHERE

1937 id(a) <> id(b)

1938 CREATE

1939 (a)-[:NEXT_TO {reason: "R_HIGH_Z_MID_Y"}]->(b);

1940 MATCH

1941 (a:Item) -[:R_HIGH_Z_BOT_Y]->(b:Item)

1942 WHERE

1943 id(a) <> id(b)

1944 CREATE

1945 (a)-[:NEXT_TO {reason: "R_HIGH_Z_BOT_Y"}]->(b);

1946 MATCH

1947 (a:Item) -[:R_HIGH_Z_BIG_Y]->(b:Item)

1948 WHERE

1949 id(a) <> id(b)

1950 CREATE

1951 (a)-[:NEXT_TO {reason: "R_HIGH_Z_BIG_Y"}]->(b);

1952 MATCH

1953 (a:Item) -[:R_LOW_Z_TOP_Y]->(b:Item)

1954 WHERE

1955 id(a) <> id(b)

1956 CREATE

1957 (a)-[:NEXT_TO {reason: "R_LOW_Z_TOP_Y"}]->(b);

1958 MATCH

1959 (a:Item) -[:R_LOW_Z_MID_Y]->(b:Item)

1960 WHERE

1961 id(a) <> id(b)

1962 CREATE

1963 (a)-[:NEXT_TO {reason: "R_LOW_Z_MID_Y"}]->(b);

1964 MATCH

1965 (a:Item) -[:R_LOW_Z_BOT_Y]->(b:Item)

1966 WHERE

1967 id(a) <> id(b)

1968 CREATE

1969 (a)-[:NEXT_TO {reason: "R_LOW_Z_BOT_Y"}]->(b);

1970 MATCH

1971 (a:Item) -[:R_LOW_Z_BIG_Y]->(b:Item)

1972 WHERE

1973 id(a) <> id(b)

1974 CREATE

124 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

1975 (a)-[:NEXT_TO {reason: "R_LOW_Z_BIG_Y"}]->(b);

1976 MATCH

1977 (a:Item) -[:R_BIG_Z_TOP_Y]->(b:Item)

1978 WHERE

1979 id(a) <> id(b)

1980 CREATE

1981 (a)-[:NEXT_TO {reason: "R_BIG_Z_TOP_Y"}]->(b);

1982 MATCH

1983 (a:Item) -[:R_BIG_Z_MID_Y]->(b:Item)

1984 WHERE

1985 id(a) <> id(b)

1986 CREATE

1987 (a)-[:NEXT_TO {reason: "R_BIG_Z_MID_Y"}]->(b);

1988 MATCH

1989 (a:Item) -[:R_BIG_Z_BOT_Y]->(b:Item)

1990 WHERE

1991 id(a) <> id(b)

1992 CREATE

1993 (a)-[:NEXT_TO {reason: "R_BIG_Z_BOT_Y"}]->(b);

1994 MATCH

1995 (a:Item) -[:R_BIG_Z_BIG_Y]->(b:Item)

1996 WHERE

1997 id(a) <> id(b)

1998 CREATE

1999 (a)-[:NEXT_TO {reason: "R_BIG_Z_BIG_Y"}]->(b);

2000 MATCH

2001 (a:Item) -[:R_SMALL_Z_TOP_Y]->(b:Item)

2002 WHERE

2003 id(a) <> id(b)

2004 CREATE

2005 (a)-[:NEXT_TO {reason: "R_SMALL_Z_TOP_Y"}]->(b);

2006 MATCH

2007 (a:Item) -[:R_SMALL_Z_MID_Y]->(b:Item)

2008 WHERE

2009 id(a) <> id(b)

2010 CREATE

2011 (a)-[:NEXT_TO {reason: "R_SMALL_Z_MID_Y"}]->(b);

2012 MATCH

2013 (a:Item) -[:R_SMALL_Z_BOT_Y]->(b:Item)

2014 WHERE

2015 id(a) <> id(b)

2016 CREATE

2017 (a)-[:NEXT_TO {reason: "R_SMALL_Z_BOT_Y"}]->(b);

2018 MATCH

2019 (a:Item) -[:R_SMALL_Z_BIG_Y]->(b:Item)

2020 WHERE

2021 id(a) <> id(b)

2022 CREATE

2023 (a)-[:NEXT_TO {reason: "R_SMALL_Z_BIG_Y"}]->(b);

2024 MATCH

2025 (a:Item) -[:B_HIGH_Z_LEFT_X]->(b:Item)

2026 WHERE

2027 id(a) <> id(b)

2028 CREATE

2029 (a)-[:NEXT_TO {reason: "B_HIGH_Z_LEFT_X"}]->(b);

2030 MATCH

Knowledge Graphs for Improving Robot Operations in Logistics 125

A.4 Queries A APPENDICES

2031 (a:Item) -[:B_HIGH_Z_MID_X]->(b:Item)

2032 WHERE

2033 id(a) <> id(b)

2034 CREATE

2035 (a)-[:NEXT_TO {reason: "B_HIGH_Z_MID_X"}]->(b);

2036 MATCH

2037 (a:Item) -[:B_HIGH_Z_RIGHT_X]->(b:Item)

2038 WHERE

2039 id(a) <> id(b)

2040 CREATE

2041 (a)-[:NEXT_TO {reason: "B_HIGH_Z_RIGHT_X"}]->(b);

2042 MATCH

2043 (a:Item) -[:B_HIGH_Z_LONG_X]->(b:Item)

2044 WHERE

2045 id(a) <> id(b)

2046 CREATE

2047 (a)-[:NEXT_TO {reason: "B_HIGH_Z_LONG_X"}]->(b);

2048 MATCH

2049 (a:Item) -[:B_LOW_Z_LEFT_X]->(b:Item)

2050 WHERE

2051 id(a) <> id(b)

2052 CREATE

2053 (a)-[:NEXT_TO {reason: "B_LOW_Z_LEFT_X"}]->(b);

2054 MATCH

2055 (a:Item) -[:B_LOW_Z_MID_X]->(b:Item)

2056 WHERE

2057 id(a) <> id(b)

2058 CREATE

2059 (a)-[:NEXT_TO {reason: "B_LOW_Z_MID_X"}]->(b);

2060 MATCH

2061 (a:Item) -[:B_LOW_Z_RIGHT_X]->(b:Item)

2062 WHERE

2063 id(a) <> id(b)

2064 CREATE

2065 (a)-[:NEXT_TO {reason: "B_LOW_Z_RIGHT_X"}]->(b);

2066 MATCH

2067 (a:Item) -[:B_LOW_Z_LONG_X]->(b:Item)

2068 WHERE

2069 id(a) <> id(b)

2070 CREATE

2071 (a)-[:NEXT_TO {reason: "B_LOW_Z_LONG_X"}]->(b);

2072 MATCH

2073 (a:Item) -[:B_BIG_Z_LEFT_X]->(b:Item)

2074 WHERE

2075 id(a) <> id(b)

2076 CREATE

2077 (a)-[:NEXT_TO {reason: "B_BIG_Z_LEFT_X"}]->(b);

2078 MATCH

2079 (a:Item) -[:B_BIG_Z_MID_X]->(b:Item)

2080 WHERE

2081 id(a) <> id(b)

2082 CREATE

2083 (a)-[:NEXT_TO {reason: "B_BIG_Z_MID_X"}]->(b);

2084 MATCH

2085 (a:Item) -[:B_BIG_Z_RIGHT_X]->(b:Item)

2086 WHERE

126 Knowledge Graphs for Improving Robot Operations in Logistics

A APPENDICES A.4 Queries

2087 id(a) <> id(b)

2088 CREATE

2089 (a)-[:NEXT_TO {reason: "B_BIG_Z_RIGHT_X"}]->(b);

2090 MATCH

2091 (a:Item) -[:B_BIG_Z_LONG_X]->(b:Item)

2092 WHERE

2093 id(a) <> id(b)

2094 CREATE

2095 (a)-[:NEXT_TO {reason: "B_BIG_Z_LONG_X"}]->(b);

2096 MATCH

2097 (a:Item) -[:B_SMALL_Z_LEFT_X]->(b:Item)

2098 WHERE

2099 id(a) <> id(b)

2100 CREATE

2101 (a)-[:NEXT_TO {reason: "B_SMALL_Z_LEFT_X"}]->(b);

2102 MATCH

2103 (a:Item) -[:B_SMALL_Z_MID_X]->(b:Item)

2104 WHERE

2105 id(a) <> id(b)

2106 CREATE

2107 (a)-[:NEXT_TO {reason: "B_SMALL_Z_MID_X"}]->(b);

2108 MATCH

2109 (a:Item) -[:B_SMALL_Z_RIGHT_X]->(b:Item)

2110 WHERE

2111 id(a) <> id(b)

2112 CREATE

2113 (a)-[:NEXT_TO {reason: "B_SMALL_Z_RIGHT_X"}]->(b);

2114 MATCH

2115 (a:Item) -[:B_SMALL_Z_LONG_X]->(b:Item)

2116 WHERE

2117 id(a) <> id(b)

2118 CREATE

2119 (a)-[:NEXT_TO {reason: "B_SMALL_Z_LONG_X"}]->(b);

Cypher Query 16: Resulting Cypher query for the NEXT TO relation.

Knowledge Graphs for Improving Robot Operations in Logistics 127

	Contents
	Introduction
	Context and Motivation
	Research Questions and Scope
	Approach and Desired Outcomes
	Contribution and Findings

	Background
	Property Graphs & (Graph) Database Models
	Data Integration
	Reliability of Machines
	Previous Works in Vanderlande

	Business Understanding
	STOREPICK Overview
	The palletizer cell
	The Business Problem

	Dataset Descriptions
	SCADA
	Telegrams
	Teaching
	StackInfo
	LFL Recipes

	Data Integration
	Join 1: SCADA + Telegram
	Join 2: + StackInfo
	Join 3: + LFL Recipes
	Join 4: + Teaching

	Data Model: Graph Database
	Model Description
	Model Implementation

	Results
	Node Item – see Section 6.2.2
	Node Pallet – see Section 6.2.3
	Relation ON – see Section 6.2.4
	Relation PLACED_BEFORE - see Section 6.2.5
	Relation NEXT_TO – see Section 6.2.8
	Issue: Relation ON_TOP – see Section 6.2.7

	Discussion
	The Data Quality Issue
	Graphs Usage
	Threats to Validity
	Future Work

	Conclusion
	List of Figures
	List of Tables
	List of Codeblocks, Scripts, and Queries
	References
	Appendices
	Dataset Tables
	Data Model
	Scripts
	Queries

