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1 Introduction

1.1 Background

Process discovery (PD) in process mining is the task of transforming an event log into an in-
terpretable model, usually a Petri net (PN). Traditionally this transformation is achieved in an
algorithmic sense, for instance using the α-algorithm [1]. The event log, which is the input data to
the algorithm that solves PD, stems from some unknown probability distribution p∗. Empirically
any event log contains what would be considered “noise” by any discovery method. This noise,
however, is usually not measurement noise — what the field of machine learning (ML) refers to
as noise: unwanted data items — but rather various deviations in and variations of the data. We
also call this infrequent behaviour, and its presence makes the PD problem more complex: PD
algorithms need to somehow deal with (many of) these deviations. Oftentimes the purpose of
process discovery is to detect these various deviations and to represent them in an explainable
model subject to four main criteria: fitness, precision, generalization, and simplicity [2].

Current algorithmic approaches typically aim for identifying main behaviour, and then use con-
formance checking and model repair methods to study the deviations and differences. This ap-
proach of aiming for identifying main behaviour makes a fundamentally incorrect assumption
about how said behaviour manifests: it assumes that behaviour that occurs frequently is also con-
sidered the main behaviour, and that it can be explained by a simple model. This assumption may
initially seem correct, but it does not need to be the case: consider some process with n parallel
events (events are explained in Section 2.1.1). To see all behaviour in such process, we need to see
n! traces (traces are explained in Section 2.1.1). If some of these n! traces occur more frequently
than others, and traces with infrequent directly-follows pairs (see Section 3.1.1) are filtered out
by the chosen PD method, then we end up with a more complex and worse model than desired.

Using an ML-based approach attempts to generalise away from such assumptions, as done in the
thesis by D. Sommers [3] where a graph convolutional network (GCN) is used to solve the PD
problem. GCNs, however, do not consider learning the true underlying distribution p∗, even though
this true distribution (p∗) can trivially be used to optimally solve classification, prediction, and
data imputation tasks. As such, in this internship the goal is to investigate if using probabilistic
models, in particular generative models which learn the true distribution of the data, are useful
in solving the PD problem. In other words, we are interested in how probabilistic models are
linked to process models, if at all. Probabilistic models are used to perform inference: answering
particular questions (queries) that we have, based on the underlying true distribution of some
dataset. If we can compute an answer to such query in polynomial time, then inference is tractable
(when saying that inference is tractable, we usually mean that it is tractable in terms of model
complexity; see also Section 4). An explainable model is desired, but a trade-off in explainability
for superior performance is accepted.

Probabilistic models in process discovery 1



1 INTRODUCTION

1.2 Research Questions

To systematically answer this question, that is, whether or not we can use probabilistic models and
in particular generative models for solving the PD problem, we developed the following specific
research questions.

RQ 1 How do process discovery algorithms deal with infrequent behaviour?

RQ 2 Does it make sense to use probabilistic models directly on event data for process discovery?

(a) Do we care about tractable inference?

(b) Do we need the expressiveness of intractable models to properly model event logs?

(c) Can probabilistic models learn dependencies within a trace? Specifically:

i. Long-term dependency on a single previous item: 〈a, . . . , b〉 where b occurs because
earlier a occurred, where there are many events in-between a and b.

ii. Short-term dependency on a single previous item: 〈a, b〉 where b occurs because
earlier a occurred, where there are no events in-between a and b.

iii. Long-term dependency on multiple previous items: 〈a, b, c . . . , d〉 where d occurs
because earlier a, b, c occurred in precisely those indices in the trace, where there
are many events in-between c and d.

iv. Short-term dependency on multiple previous items: 〈a, b, c〉 where c occurs because
earlier a, b occurred in precisely those indices in the trace, where there are many
events in-between b and c.

(d) Can we turn a probabilistic model into a petri net? If yes, how?

RQ 3 How do we use use the results of RQ 2 in process discovery?

The questions under RQ 2 are theoretically oriented: they ask about particular properties of
probabilistic models when applied on event data. RQ 3 is a follow-up question that is practically
oriented: it asks how we can actually use the information from RQ 2. By conducting this research,
we hope to identify which existing probabilistic models can be used to address open problems in
process discovery or whether there are larger gaps between both fields.

1.3 Method

The intended methodology to answer the research questions is to first conduct a structured lit-
erature study on how infrequent behaviour (“noise”) is handled in PD, as well as a literature
study on probabilistic models. For PD it is important to understand the various quality criteria
(fitness, precision, generalization, and simplicity) used to evaluate the various types of models.
For probabilistic models the literature study is extensive: a general overview on different types of
probabilistic models will be given, as well as a section on the data transformation task, that is,
how to transform data into a probabilistic framework. Naturally, the proposed method utilising
GCNs is to be included in the literature study on PD methods. By conducting the literature
studies, one can compare the state of the art of both PD and probabilistic models to identify
similarities and differences between the fields. Some experiments within the two fields may be
conducted if necessary to gain a better understanding of relevant papers and models, either by
re-running existing experiments or applying existing implementations. It is evidently also import-
ant to experiment using sequential data (e.g. event logs) on some suitable probabilistic model to
gain experience with how probabilistic models can handle sequential data. This suitability follows
from the performed literature study.

1. Conduct a literature study on how infrequent behaviour is handled in the process discovery
phase.

2. Create a systematic literature overview in a new field: probabilistic models.

2 Probabilistic models in process discovery



2 PRELIMINARIES

(a) Show a general overview of probabilistic models.

(b) Show specific literature pertaining to data transformation tasks.

3. Compare techniques and research problems of different fields: process discovery and prob-
abilistic models.

(a) Apply existing implementations / Re-run existing experiments.

4. Identify research gaps and assess how they could be closed.

(a) Run experiments that uses both fields (e.g. experiment using event log data on some
suitable probabilistic model).

(b) Investigate feasibility of using probabilistic models on sequential data (e.g. event logs).

1.4 Findings

We propose a method that allows any probabilistic model to be used as a preprocessing step for
any PD method. It includes a conversion from input data (logs) to random variable (RV)s, as
well as multiple ideas on converting from a learned distribution (p̂(x)) to an event log, which can
then be used by some PD method. Using this preprocessing step, which is effectively a way to
filter data, one can select precisely which traces are deemed interesting, based on probability. The
methodology is explained in Section 5. We also discuss the similarities between learning process
models and learning probabilistic models.

The remainder of this report is structured as follows. Section 2 contains preliminaries for under-
standing the fields of process mining and probabilistic models. In Section 3 we elaborate on how
PD methods handle infrequent behaviour, which answers RQ 1. Section 4 attempts to give a
categorisation of various existing probabilistic models, reporting on what each model is commonly
used for, and in Section 5.1 we demonstrate that interpreting event data as a random variable
(RV) is non-trivial. In particular, we show an interesting way to interpret events as RVs under
the assumption that we use a simple event log. The report is concluded by a discussion on our
results and on future directions for research in Section 6, and a conclusion in Section 7.

2 Preliminaries

This section contains all required background knowledge from the process mining field (Section
2.1), from probability (Section 2.2), from graph theory (Section 2.3) and from ML (Section 2.4)
to understand the conducted research.

2.1 Process Mining

In process mining we assume there is some real-life (unknown) system S. This system, commonly
called the underlying process, can be anything. Examples range from ordering something from
a web-shop to commuting to work and even how a caterpillar turns into a butterfly. Since the
system S is unknown, we cannot do analysis on it. In stead, we have to use concrete datasets:
event logs L, containing data on various executions of S. Since L may be (very) complex, we
(usually) cannot use it directly. As such, we want to use L to create some model M that describes
S, subject to some criteria of “goodness”, usually fitness, precision, generalization, and simplicity.

2.1.1 Event Log

An event, usually denoted with lowercase letters a, b, . . ., are atomic elements of activity as
observed during a particular execution of a process. Since events are atomic elements of activity,
we sometimes refer to an event as an activity, even if this is formally not the correct name. A
trace σ, denoted as a sequence of events surrounded by 〈·〉, describes the execution of one specific

Probabilistic models in process discovery 3



2 PRELIMINARIES

instance, commonly called a case, of the logged process. Traces formally consist of an arbitrary
number of events, including zero. A collection of traces is an event log L, sometimes simply
called a log. A log commonly is the input data to any process discovery algorithm. It contains all
event information that is related to a particular process. Formally, an event log is a multi-set of
any number of traces. It may be an empty set, but in such case there is no meaningful process
mining to be done. We use L(σ) to denote the frequency of particular trace σ in some log L.
Note that there are various standards that allow to represent event logs in digital format such as
MXML [4] and XES [5], the latter being backed by IEEE.

a p1

p2

d

end

cb

p0start

p2

bc

Figure 1: A labelled Petri net corresponding to log L = {〈a, b, c, d〉2, 〈a, c, b, d〉1}

To further illustrate the elements of an event log, consider some log L = {〈a, b, c, d〉2, 〈a, c, b, d〉1},
which contains a total of 2 cases (number of unique traces). For the first trace, one sees L(〈a, b, c, d〉) =
2: this trace occurs 2 times in the log L. Similarly, for the second trace we have L(〈a, c, b, d〉) = 1:
it occurs a singular time only. There are a total of 4 observed events (a, b, c, d), and each case
starts by executing activity a, and ends with executing activity d. In between the starting and
ending activity there must be an execution of activities b and c in any order. Looking at an event
log can provide us with interesting insights into how a process works as illustrated, but usually
an event log contains many items, which makes manually looking at the event data an infeasible
task.

2.1.2 (Labelled) Petri Nets & Workflow Nets

A Petri net (PN) is an example of such model M . Formally, it is a triple (P, T, F ), where P
is a finite set of places (denoted by circles), T a finite set of transitions (denoted by squares or
rectangles) such that P ∩T = ∅ and F ⊆ (P×T )∪(T×P ) a set of directed arcs called flow relation.
A labelled Petri net is a tuple (P, T, F,A, `) with P , T and F identical to the definitions in a
PN, A a set of activity labels and ` : T → A a labelling function. An example of a labelled PN
is shown in Figure 1, corresponding to the example log L as given in Section 2.1.1. A workflow
net (WF-net) is a specific type of labelled PNs where it is required that there are unique source
and sink places, and each node is on some path from the source to the sink.

A key point of modelling with PNs is replay, informally referred to as “playing the token game”.
Tokens, denoted by black dots within a place, have no real meaning — except when working with
a Coloured Petri net (CPN) where tokens are given data properties — and form the base for any
simulation performed with PNs. For a transition t to fire, it needs a minimum of 1 token in each
of its’ incoming places. When t fires, it consumes 1 token from each of its’ incoming places, and
subsequently produces 1 token in each of its’ outgoing places. The incoming and outgoing places
are formally called preset and postset, and they are denoted by •t and t• respectively. A PN
combined with tokens is referred to as a marked Petri net. The initial state of these tokens is
thus called an initial marking, where markings are formally functions M : T → N that assign a
natural number to transitions. Knowing that markings exist, and realising that they may be used
to model particular constructs, suffices.

As hinted in previous paragraph, there are different modelling constructs supported by (labelled)
PNs (or WF-nets). A few are sketched below. The easiest one is sequential execution, as
illustrated in Figure 2: first transition a fires, after which transition b fires.

4 Probabilistic models in process discovery
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a

end

b

p0start

Figure 2: A sequence.

Since transitions can only fire if all input places have (at least one) token in them it means that we
can model decisions, or choices, as illustrated in Figure 3: after firing a, only b or c can fire, but
not both. As such, this models a decision between b (and anything modelled after the transition
b has fired) and c (and anything modelled after the transition c has fired). Usually we call this
structure an XOR-split. There are also XOR-joins, which, as the name implies, allows to join a
decision back into the ‘main’ flow, as illustrated in Figure 4: regardless of a c or b that fires, the
next transition that gets enabled is always d. Note that Figure 1 is an example that combines
both an XOR-split and XOR-join, effectively modelling a choice between the 2 sequences 〈b, c〉
and 〈c, b〉.

a

b

p0start c

Figure 3: An XOR-split.

p0

d

p1

c

b

Figure 4: An XOR-join.

Similar to choices PNs can also be used to model concurrency. We call this AND-splits and
AND-joins, as illustrated in Figures 5 and 6 respectively: after a fires the sequences starting with
b and c can fire independently, allowing for concurrent execution.

a

p1

p0

start c

b

Figure 5: An AND-split.

p1

p0 c

p1b

a

Figure 6: An AND-join.

2.1.3 Conformance Checking

Conformance checking in process mining effectively computes measures of “goodness” of a model.
These measures are important for all types of models, but for the sake of our discussion here we
constrain ourselves to the Petri net family. A conformance checking method (specific to the PN
family) generally computes 4 measures by “playing the token game” as mentioned earlier: fitness
(the discovered model should allow for behaviour as seen in log L), precision (the discovered model
should not allow for behaviour completely unrelated to what was seen in log L), generalisation,(the
discovered model should generalise the example behaviour as seen in log L) and simplicity (the
discovered model should be as simple as possible) [6].

Probabilistic models in process discovery 5



2 PRELIMINARIES

Figure 7: The 4 measures of “goodness” in PD [6].

2.2 Probability

2.2.1 Probability Space

All hard or complex computations related to probability can be brought back to the basic notion
of a probability space. As such, we deem it important that the reader is knowledgeable on the
basic definitions of probability. We always use the same running example where applicable: rolling
a fair 6-sided die, where fair means that all possible outcomes have equal probability. The set of
all possible outcomes is the sample space, denoted by Ω. Formally, Ω can be any non-empty set,
and it describes the universe in which randomness takes place. Elements ω ∈ Ω are called atomic
events. When we roll the die, we assume that there exists some random selection mechanism that
picks such atomic event ω from Ω. The main idea of probability is to capture this randomness. One
way of capturing this randomness is the frequentist definition (or interpretation) of probability:
suppose that we use the random selection mechanism infinitely many times, then the probability
that the outcome is a particular atomic event ω is equal to the counting how many times it occurs,
and dividing it by the number of trials n approaching infinity as shown in Equation 1.

p(ω) := lim
n→∞

∑n
i=1 1 [ωi = ω]

n
(1)

We can extend atomic events to events: an event is any subset A ⊆ Ω, where (by definition)
the elements of A are ω. In the running example, we could define an event for “rolling an even
number” i.e. A = {2, 4, 6}. By extending the frequentist definition of probability to sets we define
a probability measure, as shown in Equation 2. Note the relation between two definitions:
P({ω}) = p(ω).

P(A) := lim
n→∞

∑n
i=1 1 [ωi ∈ A]

n
(2)

As can be seen, a probability measure is defined on subsets of the sample space. Rosenthal [7]
demonstrated, however, that it is impossible to assign probability to all subsets of some Ω. Instead,
we must use a σ-algebra over the sample space. A σ-algebra Σ defined on some sample space Ω
is a set of subsets A ⊆ Ω — one commonly also sees the technically incorrect notation A ∈ Ω —
such that it contains the empty set (∅ ∈ Σ), it is closed under complement (A ∈ Σ =⇒ A ∈ Σ),
and it is closed under union (∀A1, A2, . . . ∈ Σ : (

⋃
iAi) ∈ Σ). By definition of the σ-algebra it is

possible to assign probability to all A ∈ Σ.

Finally, a probability space is a triple (Ω,Σ,P) consisting of some sample space Ω, a σ-algebra
Σ defined on all events A ⊆ Ω, and a probability measure P : Σ → R mapping events A to the
real numbers R such that P(∅) = 0 and P(Ω) = 1.

6 Probabilistic models in process discovery
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2.2.2 Random Variables

Let (Ω,Σ,P) be some probability space as defined above, and let X be some space, for instance
the real numbers. Any measurable function X : Ω → X is a RV. Note how RVs are functions
(not variables), and not random. If X is countable, then we say that X is a discrete RV, and
in this case we have a probability mass function (PMF) pX : X → R that specifies the
probability measure PX as pX(x) := PX({x}). Suppose that Y is an uncountable set, and that
Y : Ω→ Y. We call Y a continuous RV, on which we define a probability density function (PDF)
pY : Y → [0,∞) such that ∀A ∈ Ω :

∫
A
pY (y)dy = PY (A). Notice how pX is overloaded: it can

be both a PDF or PMF. To make notation less cumbersome, p is simply called a density. When
in context it is clear about which RV we are talking about, the subscript is dropped.

Suppose we have RVs X1, . . . , Xn mapping Ω to X1, . . . ,Xn respectively. A random vector, or
multivariate random variable, is then defined as X = (X1, . . . , Xn). We call X = ×n

i=1Xi a joint
state space. If each Xi is discrete, then X is discrete, and has a joint PMF. If any Xi is
continuous, then X is continuous, and has a joint PDF.

2.2.3 Marginalisation

Marginalisation provides one routine that is used during inference — the act of manipulating (joint)
distributions to answer a particular query (question). Let p be the distribution of some random
vector X, and let Y and Z = {Z1, . . . , Zk} be any partition of X, that is, Y∩Z = ∅ and Y∪Z = X.
Then we define the marginal distribution of Y as shown in equations 3 (continuous case) and 4
(discrete case). Note that we abuse notation, as commonly done in the field of probability: we
say that some vector z can be written as a list of its components z1, . . . , zk without caring about
order, even though order usually matters.

p(Y) =

∫
Z
p(y, z)dz =

∫
Z1

. . .

∫
Zk

p(y, z1, . . . , zk)dz1 . . . dzk (3)

p(Y) =
∑
Z
p(y, z) =

∑
Z1

. . .
∑
Zk

p(y, z1, . . . , zk) (4)

Marginalization can be seen as “summing out” a (subset of) particular RVs. In Bayesian reasoning,
the marginal distribution is called the prior.

2.2.4 Conditioning

Conditioning provides another basic routine that is used during inference. Let p(Y,Z) be the
joint distribution of some Y and some Z. The conditional distribution is defined as shown
in Equation 5 for the continuous case. For the discrete case, the integral is replaced with a
summation. Note how marginalization is used in the step denoted by

∗
=.

p(y|z) =
p(y, z)

p(z)

∗
=

p(y, z)∫
Y p(y, z)dy

(5)

Conditioning can be seen as introducing evidence. An alternative interpretation is fixing random
variables to a particular value that is already known. In Bayesian reasoning, the conditional
distribution is a likelihood. The joint distribution gives rise to the posterior p(z|y).

2.2.5 (Conditional) Independence

Independence is computationally a highly desirable property. For two random vectors X and Y,
we say that X and Y are independent, denoted by X ⊥⊥ Y, if any of the following conditions hold:

• p(X,Y) = p(X) · p(Y)

• p(X | Y) = p(X)

Probabilistic models in process discovery 7
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• p(Y | X) = p(Y)

We can also say that two random variables X and Y are conditionally independent given Z,
denoted by X ⊥⊥ Y | Z, if any of the following conditions hold:

• p(X,Y | Z) = p(X | Z)p(Y | Z)

• p(X | Y,Z) = p(X | Z)

• p(Y | X,Z) = p(Y | Z)

Note that unconditional independence is a special case with Z = ∅.

2.2.6 Probabilistic queries

Queries (q) are particular questions that we want an answer for. A probabilistic model (m)
gives us an answer to these queries by using inference routines such as marginalisation (Section
2.2.3) and conditioning (Section 2.2.4). For the purpose of this work we consider the different
query types as explained in [8]. Some queries are ‘easier’ than others, which is formalised by the
computation of answering them being tractable. If some query is tractable, it just means that it is
realistically feasible to compute it within acceptable time-frame. Formally, if an algorithm solves
a problem of size n in some number of time steps that can be expressed as a polynomial function
of n, then we say that the problem is solved tractably in terms of its size.

1. EVI – Complete Evidence These type of queries ask a question with complete evidence, or
complete knowledge, of the things that the query depends on. In this meaningless example,
X = {A,B,C} is a random vector, consisting of 3 random variables.

q(m) = pm(X = {a, b, c}) = pm(A = a,B = b, C = c)

2. MAR – Marginal Queries These types of queries are similar to EVI, but do not provide
complete evidence, only partial evidence. If MAR is tractable, conditional queries are tract-
able too. Note that MAR in its general form is an integral. Here, B is not provided, hence
the query is a marginal one.

q(m) = pm(A = a,C = c)

3. CON – Conditional Queries These queries are simply conditional probabilities. An ex-
ample: “What is the probability that Daniël is going to Veghel, given that today is a
Thursday?”, then q denotes the event that Daniël goes to Veghel, and e denotes that today
is a Thursday.

q(m) = pm(q | e) =
pm(q, e)

pm(e)

4. MAP – Maximum A Posteriori Also commonly referred to as Most Probably Explanation
(MPE): These queries are particularly interesting. An example: “Which type of cheese is
most likely to be bought by Daniël on Mondays?”, then the evidence (e) then is the day
of the week (Monday) and the fact that the buyer is Daniël, while the query (q) is about
cheese.

q(m) = arg max
q

pm(q | e)

5. MMAP – Marginal MAP A marginalised variant of MAP where we do not introduce full,
but only partial evidence. This is also referred to as Bayesian Network MAP. MMAP is to
MAP what MAR is to EVI. So, an example would then be “Which type of cheese is most
likely to be bought by Daniël?”, where the day of the week is not given. Note that the
summation over h is a summation over hidden or latent variables: these are the ones not
present in the query. Furthermore, Q∪H∪E = X, with X being the original random vector.

q(m) = arg max
q

∑
h

pm(q,h|e)

8 Probabilistic models in process discovery
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6. ADV – Advanced Queries These queries are even more complicated than previous ones.
You can see them as any combination of MAP, logical events, counts, group comparisons,
. . . . The example from [8] asks “Which day is most likely to have a traffic jam on my route
to campus?”, which is represented as shown below.

q(m) = arg max
d

pm

(
Day = d ∧

∨
i∈route

Jamstreeti

)

2.2.7 Curse of Dimensionality: why models exist

A final item to note is that the curse of dimensionality plays a large role when using probabilistic
models. In Section 2.2.6 we show that there are various queries q that can be answered using
a probabilistic model m by means of marginalisation (Section 2.2.3) and conditioning (Section
2.2.4). Let us consider an example, where we want to model a system of ten physical particles
with ‘spin up‘ and ‘spin down‘ states, modelled as binary RVs. The complete joint distribution in
this scenario has a total of 210 = 1024 combinations that it can take. A thousand states is fine
to represent on a computer as-is. Now consider that we have twenty particles in stead. Then,
the complete joint distribution has 220 = 1048576 combinations, which while still doable, already
might run into some problems on older systems to represent. In the case that there are 40 particles,
we can no longer represent the joint distribution directly, as 240 = 1099511627776 is simply too
large. By using a model m that represents probability in a different way from just raw data, we
(sometimes) can still deal with these extremely high numbers.

2.3 Graph Theory

2.3.1 Basic definitions

An undirected graph G = (V,E) is a pair of sets V and E, with elements v ∈ V being nodes
(also called vertices), and elements e ∈ E being undirected edges (also called lines or links).
Undirected edges are defined as a set of exactly two vertices e = {u, v} with u 6= v and u, v ∈ V .
For some e = {u, v} we say that u and v are neighbours. We denote the set of neighbours as
nb(v).

Similarly, a directed graph G′ = (V,E′) is a pair of sets V and E′, with V being identical to
the undirected case, but elements e ∈ E′ are now directed edges, defined as ordered pairs (u, v)
where u 6= v and u, v ∈ V . If (u, v) ∈ E then there is a directed edge from node u ∈ V to node
v ∈ V : u is the parent of v and v is the child of u. We denote the set of parents as pa(v) and
the set of children as ch(v).

Given a graph (directed or undirected) G, we can define a walk as a sequence of nodes (v1, . . . , vn)
such that for each two consecutive nodes vi, vi+1 it holds that they are neighbours. A directed
walk is a walk where in stead of neighbours we have that for consecutive nodes vi and vi+1 the
latter is a child of the first. If we constrict a walk to only unique nodes, then we call it a path.
Note that there may be an undirected walk in a directed graph (that may go against the direction
of the arrows). If between every pair of nodes u and v there is a walk, then we call the graph
connected. Cycles are walks (v1, . . . , vn) with v1 = vn, and they can be directed if the walk
itself is directed. An acyclic graph is a graph without cycles. Finally, a clique is a subset of
nodes v1, v2, . . . of an undirected graph such that every two nodes vi and vj are neighbours, where
vi 6= vj . A maximal clique is a clique that cannot be extended by including one more neighbour.

2.3.2 Types of Graphs

By requiring some graph G to be acyclic or connected we can distinguish between different types of
graphs. As “base” graph G we consider undirected graphs. In particular, we distinguish between
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forests, trees, and their directed equivalents. Note that the distinction as made in this work is
not universal: there exist multiple naming conventions of which we simply chose one.

Forest If the only restriction that we impose on G is acyclicity, then we have a forest. Nodes
v in a polyforest may have any number of neighbours, and there may be any number of
components.

Polyforest If we require G to be both acyclic and directed, then we call it a polyforest. A
polyforest is also called a directed forest or a directed acyclic graph (DAG). Nodes v may
have any number of parents or children, and there may be any number of components.

Tree If we not only require acyclicity, but also connectedness, then we have a polytree. Similar
to a polyforest, nodes v in a polytree may have any number of neighbours, but there is only
one component.

Polytree If we require G to be acyclic, connected,and directed, then we call it a polytree. A
polytree is also called a directed tree. Nodes v may have any number of parents or children,
but there is only one component.

2.4 Neural Networks

Deep generative models are a subclass of probabilistic models utilising various types of neural
networks. As such, we assume the reader is familiar with following concepts: 1. dense and con-
volutional layers, 2. activation functions such as sigmoid, 3. Jacobian matrices. For a proper
introduction to neural networks see [9].

3 Infrequent Behaviour in Process Discovery

We categorise different process discovery methods and explain their main ideas in Section 3.1. In
Section 3.2 we summarise how each of the investigated methods handle infrequent behaviour.

3.1 Categorisation of Process Discovery Methods

Previous studies have categorised [10, 11] or otherwise summarised [12] various process discovery
(PD) methods. Based on these studies and further investigation of the plethora of methods
for PD we consider following approaches: algorithmic, genetic, clustering-based, integer linear
programming (ILP), heuristic, and ML. For each category we describe the main idea and illustrate
this, where necessary, using an example discovery method. If applicable, we sketch commonalities
between how PD methods in this category handle behaviour.

3.1.1 Algorithmic1

Since PD methods categorised as algorithmic do not particularly overlap, we sketch for each
algorithm separately how infrequent behaviour is handled. To ensure mutual understanding of
what a PD method actually does, we show how the α-algorithm [1] works.

1One can argue that all methods are algorithmic in some sense. Look at the algorithmic category as containing
PD methods that do not fit in the other categories.
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3 INFREQUENT BEHAVIOUR IN PROCESS DISCOVERY

Algorithm 1: The α-algorithm [1].

input : An event log L
output: A PN α(L) = (PL, TL, FL)

1 TL = {t ∈ T | ∃σ ∈ L : t ∈ σ}
2 TI = {t ∈ T | ∃σ ∈ L : t = first(σ)}
3 TO = {t ∈ T | ∃σ ∈ L : t = last(σ)}
4 XL = {(A,B) | (A,B ⊆ TL) ∧ (A 6= ∅) ∧ (B 6= ∅) ∧ (∀a ∈ A∀b ∈ B : a→ b) ∧ (∀a0, a1 ∈ A :

a0#a1) ∧ (∀b0, b1 ∈ B : b0#b1)}
5 YL = {(A,B) ∈ XL | ∀(A′, B′) ∈ XL : (A ⊆ A′) ∧ (B ⊆ B′) =⇒ (A,B) = (A′, B′)}
6 PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL} ∪ {oL}
7 FL = {(a, pA,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪ {p(A,B), b | (A,B) ∈ YL ∧ b ∈ B} ∪ {(iL, t) | t ∈

TI} ∪ {(t, oL) | t ∈ TO}
8 return α(L) = (PL, TL, FL)

The α-algorithm first creates a set of all transitions (line 1), and it fixes the set of start (line 2) and
end (line 3) activities by looking at traces. Then, it internally constructs directly follows relations,
namely direct succession (a > b if for some trace we have 〈. . . , a, b, . . . 〉), causality (a→ b if a > b
but not b > a), choice (a#b if neither a > b or b > a) and parallel (a||b if both a > b and b > a).
Using these relations it computes pairs of sets of transitions (line 4), deletes non-maximal ones
(line 5), and determines places from them (line 6). A source (iL) and sink (oL) place is added to
the collection of places. The flow relation is created by connecting computed places and transitions
(line 7), which allows algorithm to return a Petri net (PL, TL, FL).

Shortcomings of the α method include self-loops (L1L, for instance L = {〈a, c〉, 〈a, b, c〉, 〈a, b, b, c〉,
〈a, b, b, b, c〉}, where there is a loop of length 1 for activity b), short loops (L2L, for instance
L = {〈a, b, d〉, 〈a, b, c, b, d〉, 〈a, b, c, b, c, b, d〉}, where there is a loop of length 2 for subtrace b, c),
long term dependencies (L = {〈a, c, d〉, 〈b, c, e〉}, where if a happens then later d happens, or if b
happens then later e happens), invisible/optional tasks (L = {〈a, b, c〉, 〈a, c〉}, where b is optional)
and non-free choice constructs. To alleviate these shortcomings Wen et al. developed α++ to
discover invisible tasks [13], α# to discover non-free choice constructs [14], and later α$ that takes
the good points of α# and α++ and adds a way to deal with L1L and L2L constructs [15].

The investigated algorithmic PD methods:

1. α$ [15] and its predecessors (α# [14], α++ [13], and α [1]), which all take input log L
as-is without filtering behaviour. There is no distinction between infrequent and frequent
behaviour.

2. Declare miner [16], which attempts to give temporal constraints based on a log. Declarative
models (such as the one this paper produces) do not assume block-structure, and hence are
more suitable for processes that have less structure. It works by generating a set of candidate
constraints, and then prunes these constraints based on measures taken from association rule
mining (support and confidence). There are thresholds for these measures, meaning that the
model is filtered based on the frequency of particular model constructs. There is, however,
no distinction between (nor model of) frequent and infrequent behaviour.

3. Data-aware Declare miner [17], which is similar to the Declare miner [16] but adds in a data
aspect. It effectively extends the Declare constraints from [16] with data conditions in the
form of first-order temporal logic, and then uses these extended constraints to discover a
Declare model. The model is filtered based on the frequency of particular model constructs.
There is, however, no distinction between (nor model of) frequent and infrequent behaviour.

4. MINERful++ [18], which works in two steps. It first builds a knowledge base, and then uses
said knowledge base to discover a set of constraints weighted by their support (calculated as
normalised fraction of cases in which the constraint is verified over some set of input traces).
There is a threshold on minimum required support for a particular constraint, so similar to
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[16] and [17], MINERful++ filters the model on the frequency of particular model constructs.
There is, however, no distinction between (nor model of) frequent and infrequent behaviour.

5. Process Skeletonization [19], which creates process maps of some user-settable abstraction.
There is no difference between infrequent and frequent behaviour, and the desired abstraction
may be set such that no behaviour is filtered at all (though, arguably, this does not produce
a usable model due to its complexity). Note that the abstraction level is applied after
discovery; it only influences the shown model by hiding certain parts, but the discovery
method stays identical.

6. WoMaN [20], which is based on first-order logic and uses inductive logic programming to
discover both a set of facts expressing a workflow schema, and a set of rules expressing
conditions on them. It has user-settable parameter N for “noise handling” which allows
particular (infrequent) transitions to be filtered if they don’t meet the threshold. There is
no explicit model of infrequent and frequent behaviour, but infrequent behaviour can be
consciously filtered on activity-level.

7. Hybrid miner [21], which automatically divides the log into declarative and procedural parts.
How it handles behaviour is subject to the underlying PD methods used for the respective
parts.

8. DAG Extraction [22], which creates a DAG from a log L. Since dummy nodes are used
to explain loops, all behaviour from L is also present in the extracted graph. The method
does not mention infrequent or frequent behaviour; it only cares that the extracted graph is
representative of L.

9. CNMining [23], which converts the task of PD into a Constraint Satisfaction Problem (CSP)
[24] and solves said CSP to discover causal networks. It takes parameters δ and τ , the latter
being a threshold for filtering edges on the created precedence graph. For τ = 0 the graph
remains unchanged, and there is no filtering. There is no distinction between (nor model of)
frequent and infrequent behaviour, but behaviour may be filtered due to the workings of the
algorithm.

10. Maximal Pattern Matching [25], which, as the name implies, looks at the PD problem as a
maximal pattern matching one — given some graph G = (V,E), a matching M in G is a set
of pairwise non-adjacent edges such that no two edges share common vertices; a maximal
matching is a matching that is not a subset of any other matching — to discover a process
map. The authors reflect on different types of noise (infrequent behaviour and ML noise)
and they allow the method to filter behaviour using a trace-frequency based threshold thresh.

11. RegPFA [26], which discovers a regularised probabilistic finite automata as model. It is a
probabilistic technique that models probability distributions over the set of all conceivable
event sequences. The paper contains described two software artifacts, one for learning the
distributions, and one for visualising them. Within the visualiser (which converts the learned
distributions to an interpretable model), the user can set a desired abstraction level ε such
that the visualised model is filtered, or unfiltered. Note that the abstraction level is applied
after discovery; it only influences the shown model by hiding certain parts, but the discovery
method stays identical.

12. CSMMiner [27], which discovers composite state machines (CSM) with a focus on different
process perspectives. The visualisation of the model utilises thresholds for support, confid-
ence and lift (measures from association rule learning) to decide which parts are visible, or
not visible. Note that the abstraction based on the thresholds is applied after discovery;
it only influences the shown model by hiding certain parts, but the discovery method stays
identical.

13. τ [28], which constructs a token log and mines a PN from said token log. All original traces
are considered for the token log: there is no distinction between frequent and infrequent
behaviour, and there is no filtering.
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14. PGminer [29], which constructs Conditional Partial Order Graphs (CPOG) representations
of logs. The paper proposes exact CPOG and concurrency-aware CPOG approaches, both
discovering models that cover all traces of the log. There is no distinction between frequent
and infrequent behaviour, and there is no filtering.

15. SQL Miner [30], which, as the name implies, utilises SQL to mine declarative constraints
from event log data stored in RXES format [31]. The method uses minSupp and min-
Conf thresholds for support and confidence respectively, meaning that the resulting model
is filtered based on the frequency of particular model constructs. There is, however, no
distinction between (nor model of) frequent and infrequent behaviour.

3.1.2 Genetic

A genetic algorithm is one that attempts to mimic Darwinian evolution [32], and is based on the
ideas of crossover, mutation and selection. In general terms, a genetic algorithm consists of five
phases, of which the last three are looped until some condition has been met, usually convergence
of the set of solutions.

1. Initial population Create (randomly or according to some strategy) n valid solutions to the
problem that needs to be solved. For instance, n neural networks that solve a particular
classification task.

2. Fitness function Define what it means for a solution to be good. The algorithm needs this
function during the selection stage.

3. Selection Select a subset of individuals (solutions) that are fittest (best), to be used during
crossover.

4. Crossover This is the most significant phase. For each pair of individuals (solutions) gained
during the selection phase, generate a child solution that possesses properties from both
parents. These are added to the population.

5. Mutation Mutate a solution, based on some probability. Mutation is necessary to maintain
diversity and prevent premature convergence.

Since a genetic algorithm defines a fitness function that describes how good a solution is, the
behaviour with respect to infrequent behaviour rests on this fitness function. If the method
assumes that frequent behaviour is main behaviour when creating such fitness function, then by
design of the algorithm infrequent behaviour will be filtered out.

The investigated genetic PD methods:

16. Evolutionary Declare Miner (EDM) [33], which takes its input log L as-is and specifically
states to not have a guarantee on fitness (in the process sense, not genetic sense).The genetic
fitness function is not based on the usual four quality criteria (fitness, precision, general-
isation, simplicity) but is an harmonic mean between “fitness” and “precision” measures
defined in the paper. These measure do not explicitly take frequency of behaviour into
account. As such, there is no difference between infrequent and frequent behaviour, but
behaviour (both infrequent and frequent) may be unintentionally filtered out due to the
workings of the method.

17. Evolutionary Tree Miner (ETM) [34], which does take frequency of behaviour into account in
its fitness function that is a combination of the usual four quality criteria (fitness, precision,
generalisation, simplicity), where each criteria has its own user-settable parameter to control
how important it is. It is thus possible to ensure that ETM only cares about fitness (in the
process sense, not genetic sense), ensuring that no behaviour is filtered. Based on this fitness
function (genetic sense, not process sense), omitting infrequent behaviour is penalised less
than omitting frequent behaviour.

Probabilistic models in process discovery 13



3 INFREQUENT BEHAVIOUR IN PROCESS DISCOVERY

18. Diversity Guided Evolutionary Mining (DGEM) [35], which is a method that discovers hier-
archical process models. Its evolution strategy tries to maximise the coherence of log and
model behaviour, i.e. models that better represent the event log are considered ‘fitter’. No
explicit difference is made between frequent and infrequent behaviour, but due to the in-
ner workings of the method (namely, the genetic fitness function), similar to [34], omitting
infrequent behaviour is penalised less than omitting frequent behaviour. Interestingly, the
reported trace fitness measure is always equal to 1, though this cannot be generalised.

19. ProDiGen [36], which, contrasting to previously discussed genetic PD methods, explicitly
filters infrequent behaviour: using user-settable frequency parameter ε, traces with frequency
less than µ − ε are filtered out, where µ comes from the normal distribution of traces. By
setting ε to a number such that µ−ε ≤ 0 it is possible to never filter behaviour. Another main
difference between this method and the earlier discussed genetic ones, is that ProDiGen uses
a fitness function that is hierarchical in nature: the algorithm focuses the search on complete
(measure of completeness of a model) individuals, before caring about the next ‘level’ in the
hierarchy of the fitness function.

3.1.3 Clustering

Often confused with classification, the clustering task in machine learning is one where given
(unlabelled) data, one has to decide on how many classes (clusters) there are. Some well-known
clustering algorithms are DBSCAN [37], OPTICS [38] and BIRCH [39]. In process discovery
methods clustering can be used to cluster traces or events.

The investigated clustering PD methods:

20. BPMN Miner [40], which, given some log L, computes event type clusters and their hier-
archy, projects the log over said hierarchy and then discovers models from the projected logs
to obtain a hierarchical process model. The paper gives great thought to process-subprocess
relations in the hierarchy. Even though it does not differentiate between frequent and infre-
quent behaviour (it only mentions ML noise), it filters traces after projection, that is, within
a discovered subprocess, but only if there is “noise” in the data.

21. Stage Miner [41], which, after building a flow graph from the log, recursively decomposes
(clusters) it into sets of nodes using the notion of min-cut as calculated by the Ford-Fulkerson
algorithm [42]. The paper isn’t clear on whether or not behaviour is filtered (either explicitly
or implicitly).

22. Decomposed Process Miner [43], which works by discovering clusters and selecting best ones,
then filtering the log to get sublogs, on which it discovers models (using some other PD
method) that are then merged to return the overall process model. The way that this
method handles behaviour is entirely reliant on how the chosen discovery method handles
behaviour.

3.1.4 Integer Linear Programming

Note: Not to be confused with inductive logic programming, which has also been used for PD
methods [20]. Linear programming, also referred to as linear optimisation, is a mathematical
modelling technique in which a (set of) linear function(s) is optimised subject to a set of constraints.
Solving a linear programming task is not trivial, but there are existing algorithms that can do it
such as the Simplex method [44]. ILP requires all variables used in the (set of) linear function(s)
to optimise to be integer. Whereas a solution to a linear programming problem can be computed
in tractable fashion, ILP is NP-complete (this can be proven in many ways, examples include
reductions from 3SAT to ILP or from ILP to vertex cover).

The investigated ILP PD methods:
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23. Aim [45], which uses a Parikh representation [46] of the log to discover a guaranteed fitting
PN. As such, no behaviour gets filtered, nor is there a distinction between frequent and
infrequent behaviour.

24. Proximity miner [47], which transforms the PD problem into an ILP one by looking at a
proximity measure based on the distance between events (both the proximity and distance
measures are defined in the paper). The paper discusses the difference between frequent
behaviour, ML noise, and infrequent behaviour (which it calls “positive noise”). There
is a way (changing the ILP constraints) for a domain expert to indicate what infrequent
behaviour is desired, and what should be filtered out.

25. ILP Miner [48], which is based on the theory of regions [46] (Parikh representation) to
discover a PN. Note that it internally uses the Simplex method [44] to solve the constructed
ILP formulation. It does not filter, nor differentiate between, behaviour.

26. Hybrid ILP miner [49], which too uses theory of regions (Parikh representation) to discover
a PN. In contrast with the ILP Miner, the Hybrid ILP Miner has a filter threshold that
can be set such that fitness is always 1. Internally it uses heuristics to enforce solutions
describing frequent behaviour. As such, it does differentiates between infrequent and frequent
behaviour.

3.1.5 Heuristics

Heuristic algorithms are those that, as the name implies, utilise heuristics to solve a problem well
with considerable computational speedup as opposed to optimally and slow. A prominent field
where heuristics are used is game AI: in chess, developing the knights to the centre is generally
considered better than developing them to the sides of the board. By taking many of such “rules
of thumb” and encoding them into a single scoring function to be optimised, one utilises heuristics.
Interestingly, most of the investigated heuristic PD methods are based upon [50].

The investigated heuristic PD methods:

27. HK miner [51], which takes a target parameter x setting a desired target “accuracy” (metric
defined in the paper). The method uses a best-first tree search approach, where “best” is
heuristically defined. Infrequent behaviour is considered different from frequent behaviour,
and gets filtered out during execution by design.

28. Inductive Miner - Infrequent [52], which constructs the directly follows graph (based on
directly follows - see the explanation of the α-algorithm in Section 3.1.1) and attempts to
find structures in it. Then, it splits the log based on those structures, and recurses on each
sublog. By default it discovers an “80/20” model — 80% of the observed behaviour can be
explained by a model that is only 20% of the model required to describe all behaviour” —
but this can be changed as desired. There is local filtering of subtraces (or even individual
events) that occurs only when no model constructs can be found. As such, filtering behaviour
(be it frequent or infrequent) is dependent on whether or not model constructs can be found
in the log, and the set parameters that control how fitting the model should be.

29. Heuristic Miner [53] (building on the ideas of [50] that uses heuristics based on directly
follows relations, and thus differentiates between frequent or infrequent behaviour), which
uses structuring, soundness repair, and clone removal techniques to structure the output of
the method it is based on. Since the structuring step of [53] rests on refined process structure
trees (RPST) which cannot handle cycles (regardless of length), it is clear that behaviour
(regardless of frequency) that includes cycles is filtered. There is, however, no distinction
between frequent and infrequent behaviour in either method; only between ML noise and
data.
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30. Fusion miner [54], which combines a heuristic approach [50] and the earlier mentioned
Declare miner, and heavily utilises dependency nets [16]. The method does not particularly
care about types of behaviour. It has input parameter e for pruning entropic behaviour —
behaviour that contains high entropy: a measure of the amount of information present —
which can be set such that no behaviour is filtered.

31. Fodina [55], which similar to [53] too builds upon [50], with only different heuristics to
avoid certain types of deadlocks [2]. It does not differentiate between types of behaviour,
and filtering occurs due to the working of the algorithm ([50] cannot handle L1L or L2L
constructs), that is, the used heuristics.

32. Split Miner [56], which is similar to both Fodina [55] and [50] in that it utilises directly
follows graphs. In contrast to previously mentioned methods, the Split Miner prunes the
directly follows graph in an attempt to deal with L1L and L2L constructs and concurrency.
Since the method uses the directly follows relations, it differentiates between frequent and
infrequent behaviour. It does not guarantee a perfect fitting model: filtering of behaviour
may occur due to the used heuristics.

3.1.6 Machine learning

Usually associated with neural networks, ML is a computational paradigm where one gives the
computer a problem to solve, without code to solve it. The idea is that the machine learns how to
solve it, hence the name machine learning. The most common example when thinking about ML
is classification of the MNIST [57] images: given an image of size 28× 28 of a handwritten digit,
output what digit it is. Using ML in process mining is relatively new. As such, we only look at
the very elaborate proof of concept by Sommers [3].

The investigated ML PD method:

33. The GCN based approach [3], which models the log L as a graph, effectively turning the PD
problem into a node classification one. While the thesis has given considerable thought on
the difference between frequent and infrequent behaviour, the approach itself — or rather
proof of concept — does not differentiate between them. Behaviour is filtered due to the
approach, but this is not a design decision.

3.2 Overview

There are a plethora of different process discovery methods, of which we investigated 33. Some
are declarative in nature [16, 17, 18, 20, 30, 33], some are procedural [3, 19, 22, 23, 25, 26, 27,
28, 29, 34, 35, 36, 40, 41, 45, 47, 49, 51, 52, 53, 55, 56] — a PN is an example of a procedural
model — and some pick the best of both worlds and mix them [21, 43, 54]. Only one [26] of
the discussed methods uses the underlying (empirical) probability distribution. When it comes
to differentiating between infrequent and frequent behaviour and filtering of said behaviour, we
distinguish following categories.

No distinction between frequent and infrequent behaviour

These are the methods that do not differentiate between frequent and infrequent behaviour. We
categorise these as follows.

1. No filtering [1, 22, 28, 29, 45, 48]

2. Possibly optional conscious filtering, either by means of user input (usually a parameter)

(a) Filtering occurs only on activity level [20]

(b) Filtering occurs only on model constructs [16, 17, 18, 30]

3. Possible non-conscious filtering, due to the inner workings of the algorithm [23, 33, 40, 41]
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Distinction between frequent and infrequent behaviour

These are the methods that do differentiate between frequent and infrequent behaviour. As ex-
pected, when methods differentiate there is always some form of filtering. We categorise these as
follows.

1. Optional conscious filtering, either by means of user input (usually a parameter)

(a) Filtering occurs only on trace level [25, 36, 47, 49]

2. Conscious filtering, due to the inner workings of the algorithm [34, 35, 51, 52, 53, 55]

Other / Not applicable

1. Depends on underlying PD methods [21, 43]

2. Filtering only affects the visual representation of the model, not the PD method [19, 26, 27]

4 Probabilistic Models - An Overview

This section gives an overview of various probabilistic models. Since there is no canonical cat-
egorisation of probabilistic models we use our own categorisation based on the representation and
related interpretation of the models. In particular, we focus on whether or not it is represented as
a probabilistic graphical model (PGM), or as a non-graphical model, while discussing expressive-
ness and tractability for exact inference (when we write ‘inference’ in this section, we always imply
exact inference). For an overview of some probabilistic models coloured based on tractability see
Figure 8. Note that not all of them will be covered in this literature study. Furthermore, note
that all discussed models are a specific way to represent some probability distribution: there is no
“extraction” of a distribution; the models are used directly to perform inference.

4.1 Graphical Models

In a PGM, each node represents an RV and each edge represents a conditional dependency between
its connected nodes. Since an RV is not dependent on itself (or rather, explicit self-dependence
makes no sense), self-loops are disallowed. As such, the graph types we consider as basis in this
section are Polyforests (DAGs) for the directed case (Section 4.1.1) and undirected graphs without
self-loops for the undirected case (Section 4.1.2). Tractability discussions all come from [8].

Figure 8: Some probabilistic models, coloured on tractability [8]. Models with blue shades are
more tractable and models with red shades are less tractable.
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4.1.1 Directed: Bayesian Networks

Based on DAGs, a Bayesian network (BN) graphically represents a joint probability as shown in
Equation 6. Formally, it is a pair (G,P), where G is a DAG with its nodes representing X ∈ X
and P a collection of conditional probability distributions (CPD)s p(X | pa(X)), where pa(X)
is the set of all parents of X. For a more thorough introduction to BNs we refer to [58]. Exact
inference in BNs is commonly done by applying the variable elimination algorithm [59]. There are
also various algorithms for approximate inference such as stochastic Markov chain Monte Carlo
simulation [60] and message passing [61], also known as (generalised) belief propagation. Note that
a particular type of a BN is a causal network, where edges u→ v can be interpreted as u having
caused v. Causal networks may be interesting for modelling processes due to their causality.

p(X) =
∏
X∈X

p(X|pa(X)) (6)

There are many applications of BNs, as they effectively are just a representation of some joint
distribution combined with conditional dependencies coming from assumptions or prior knowledge.
To illustrate, BNs can be used for diagnostics, for instance diagnosing types of diseases from
medical data [62]. They can also be used for predictive tasks such as prediction of possible forest
fire causes [63].

By adding restrictions to the structure of G for a particular BN we get different classes of models.
In particular, if we restrict G to be a (rooted) directed tree such that for each node v there is at
most one parent then we have a tree-structured BN [64] which is commonly called a Chow-Liu tree
(CLT) [65], after the Chow-Liu learning algorithm (CLT algorithm) for tree-structured BNs. A
CLT is effectively a second-order product approximation of the joint distribution, where second-
order means that one RV is dependent on at most one other RV, hence the restriction that nodes
are only allowed to have at most one parent.

We can relax the CLT definition by allowing each node v to have up to k − 1 parents, giving rise
to the kth-order t-cherry Junction tree [66], based on Junction trees [67]. A Junction tree is also
known as a tree decomposition, or a clique tree. Intuitively, a Junction tree represents vertices of
a particular graph G as subtrees of a tree, as illustrated in Figure 9. For the t-cherry Junction
trees, if k = 2, that is, the second-order t-cherry Junction tree, we precisely have a CLT.
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Figure 9: Junction tree structure from a graph.

A second way to relax the definition of CLTs is by allowing for multiple roots, giving rise to a
non-tree, multiple parent structured BN. Note that this is identical to saying that we restrict G
to be a Polytree as opposed to a Polyforest. Polytree-structured BNs are more expressive than
CLTs, but pay for their expressiveness with the removal of tractable inference for some queries
[68].
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Another type of BNs is the thin Junction tree (TJT) [69], also based on Junction trees. A TJT
is a Junction tree of limited treewidth: the width of some decomposition is the size of its largest
set Xi minus 1. Informally it is an integer number specifying how far a particular graph is from
being a tree (a tree has treewidth equal to 1). For the example TJT shown in Figure 10, the size
of its largest set is 3 ({X1, X3, X4}), hence its treewidth is 2. Notice how the treewidth of a CLT
is precisely 1, as it is a tree. One can intuitively see that, since treewidth is no longer limited to
1, a TJT is more expressive than a CLT.

Figure 10: Example Thin Junction tree [8].

Finally, we can consider so-called fully factorised models, where there are only nodes and no
edges. An example of a fully factorised is a Product of Bernoulli’s (PoBs). Naturally, these can do
tractable inference (specifically inference for EVI, MAR, MAP and MMAP queries is linear in
model size), but they are rather inexpressive as they cannot model any form of dependency [8].

4.1.2 Undirected: Markov Networks

The counterpart of a BN is a Markov network (MN), as these are built upon undirected graphs as
opposed to directed ones. An important difference, as clear from the introductory paragraph of
Section 4.1, is that MNs do allow cycles in their underlying graph structure. Formally, a MN is a
pair of an undirected graph G (without self-loops) and a set of positive factors F : (G,F). The set
of factors is constructed as F := {f(C)}C∈C , where C is the set of maximal cliques (see Section
2.3) in G (and thus, consequently, C is any maximal clique in G). For a proper introduction to
factors (including a rigorous definition on what f(C) means) see [59]. In short: a positive factor
f is a positive real number defined on a graph-structure (such as a clique) that may, but does not
need to, be interpretable as a probability. Factors f1 and f2 can be multiplied (multiplying out),
as well as summed (summing out). These particular operations on factor graphs are necessary
for inference. The joint distribution of a MN is defined as shown in Equation 7, where Z is a
normalisation constant. Computing it is the hardest marginalisation task there is.

p(X) =
1

Z
∏
C∈C

f(C) (7)

MNs, just like BNs, can be used for many things. Examples range from using MNs as texture
models [70] — a texture model is a mathematical procedure capable of producing and describing a
textured image — to computer vision [71] and computational biology [72]. Arguably the most well-
known MN is the Ising model, a mathematical model of ferromagnetism in statistical mechanics,
which can be used for various applications, including denoising images [73].

Similar to BNs one can impose structural constraints on MNs, but these do not make a MN
support more types of queries in tractable fashion. They are also (considerably) less widely used
than their directed counterparts. Note that the fully factorised models from Section 4.1.1 can also
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Figure 11: Tractability spectrum for PGMs, adapted from [8].

be interpreted as being MNs due to the lack of (directed or undirected) edges. Indeed, values from
p ∈ P in fully factorised models are positive integers, hence interpretable as factors.

4.1.3 Intermezzo: Graphical Latent Variable Models

A latent variable is an RV that is not directly observed, but rather inferred from other observed
variables. A simple example from psychology is the latent variable named IQ that is estimated
using an IQ-test with various questions (that are all observed variables). Usually, latent variables
are denoted with Z. A particularly interesting class of (graphical) latent variable models is a
latent tree model (LTM). These LTMs can be directed (BNs) or undirected (MNs) and are defined
as a Polyforest and Forest respectively (see Section 2.3). In either case, an LTM models observed
variables as leaf nodes and latent variables as internal nodes (all nodes that are not root or leaf).

A latent tree model is mathematically, in terms of how it defines its probabilities, not different from
the definitions as given in Section 4.1.1 for the directed case and Section 4.1.2 for the undirected
case. The interpretation is what differs, which may allow for better modelling constructs. For
applications of LTMs we refer you to the survey done by Mourad et al. [74], which investigates
their usage in detail.

4.1.4 Tractability of graphical models

To conclude tractability for PGMs, Figure 11 shows a summarisation of their tractability and
expressiveness (expressiveness is a shorthand for how many types of probability distributions can
be modelled using a particular model). Clearly, fully factorised models are least expressive, as
they do not allow for any dependency between RVs. This does mean, however, that they allow for
tractable inference of more query types. In fact, each of the 6 types of queries listed in Section 2.2.6
can be inferred tractably using fully factorised models. CLTs and their undirected counterparts
can tractably infer EVI, MAR, CON, MAP and MMAP queries. Polytrees (and the kth order
t-cherry Junction trees), and their undirected counterparts, can no longer tractably do MMAP
queries (but all “easier” queries are still possible in tractable fashion). For TJTs MAP is no
longer possible to compute tractably. Moreover, if the treewidth bound is “too high” (u 20) then
MAR and CON queries are no longer feasible in practise [8]. Finally, one can see that BNs in
general can compute more queries in tractable fashion than MNs. We hypothesise this is likely due
to the acyclic nature of BNs, but further research is necessary to confirm (or deny)this hypothesis.
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4.2 Non-Graphical Models

Whereas graphical models have a clear graphical representation (that has underlying semantics),
non-graphical models lack such representation. These models are generally only defined in terms
of their distribution p(x). Any “graphical” representation that is shown in this section is simply
an illustration of how the models works. Most of these non-graphical models are based on neural
networks.

4.2.1 Distribution Estimation (NADE)

The distribution estimation task attempts to produce an estimator of p(x) based on samples from
it. A solution to solving the distribution estimation task is to give all samples to a particular
neural network, and then (in some way) tell it learn the estimator. This is precisely what ML-
based distribution estimators are. We explain the neural autoregressive distribution estimation
(NADE) model for binary observations [75].

Figure 12: Binary NADE, from [75].

The NADE model for binary observations is a neural network with precisely one hidden layer. It
is based on the fact that any D-dimensional distribution can be factored into a product of one-
dimensional distributions of some order o, which is a permutation of integers 1, . . . , D, illustrated
in Equation 8. Here, od represents a particular dimension d according to ordering o, and xod is
a the value of said dimension of x. Similarly, o<d represents a vector of length d − 1, ordered
according to o, and xo<d

is the corresponding subvector from x for said dimensions.

p(x) =

D∏
d=1

p
(
xod | xo<d

)
(8)

NADE parametrises each conditional p(xod | xo<d
) according to Equations 9 and 10. The para-

meters of NADE are — with D the size of the input and H the number of hidden units — input
matrix V ∈ RD×H with biases b ∈ RD and hidden layer matrix W ∈ RH×D with shared biases
c ∈ RH . An illustration of NADE is shown in Figure 12.

p(xod = 1 | xo<d
) = sigm (Vod,·hd + bod) (9)

hd = sigm
(
W·,o<d

xo<d
+ c
)

(10)

Similar models exists for real-valued observations (real-valued neural autoregressive distribution
estimator (RNADE) [76]), multinomial observations (DocNADE [77]) and even a deep variant that
uses more than 1 hidden layer (DeepNADE [78]). The family of NADE models are instances that
solve the problem of unsupervised distribution and density estimation. NADE has been used for
topic modelling [79], sequential music modelling [80], and has even been applied to a (pre-existing)
image classifier integrating an attention mechanism [81].
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4.2.2 Variational Auto Encoder (VAE)

As can be inferred from the name, a variational auto encoder (VAE) is an autoencoder (a neural
network trained to copy its input to its output [82]), where the latent space is interpreted as
a probability distribution. Figure 13 shows the VAE architecture: similar to an autoencoder
there are decoder and encoder parts. The encoder encodes the input (samples) to latent space.
The decoder decodes latent space to some distribution, which can then be sampled to get a new
sample. As such, VAEs also estimate the original distribution p(x) based on samples [83]. Since
the latent space is interpreted as a probability distribution, one can consider many VAE variants
[84], including a Categorical VAE and Beta VAE.

Figure 13: Architecture of a VAE with Gaussian latent space, taken from [85].

Example uses of VAEs range from oneshot learning [86], to regression [87] and classification and
anomaly detection of videos [88].

4.2.3 Generative Adversarial Network (GAN)

A generative adversarial model (GAN) is a model based on adversarial training ; see [89] for an
introduction. In short GANs work by using two neural networks, one being a generator (the
probabilistic part) and one being the discriminator. The task of the generator G is to generate
a sample from random noise, and the discriminator D needs to classify samples as either being
generated by G, or coming from the ‘real’ dataset. The architecture is illustrated in Figure 14.

Figure 14: Architecture of a GAN, taken from [90].
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GANs are commonly used to generate new things. A very well-known example is StyleGAN [91]
that generates high-quality images of people that do not exist. By visiting this page, one can see
examples of generated images (refresh for new images). For a structured review on applications
of GANs see [92].

4.2.4 Normalising Flow

Normalising flows are commonly called flows. They are a probabilistic model that rests upon the
change of variable theorem and invertible functions. Let pU be some base distribution (the choice
does not matter as flows are universal approximators [93]). Let f : RD → R

D be some invertible
function, and assume that both f and its inverse f−1 are differentiable. Let X and Y be two
random vectors with Y = f(X) (consequently also X = f−1(Y)). The change of variable theorem
can be found in Equations 11 and 12, where J is a Jacobian matrix.

pY(y) = pX(x) |det Jf (x)|−1
= pX(x)

∣∣det Jf−1(y)
∣∣ , x = f−1(y) (11)

pX(x) = pY(y)
∣∣det Jf−1(y)

∣∣−1
= pY(y) |det Jf (x)| , y = f−1(x) (12)

The modelled density (pX(x)) is entirely specified by the inverse function f−1, as shown in Equa-
tion 13. For sampling it is required that (f−1)−1 ≡ f , then: f(u) = x with u ∼ pU.

pX(x) = pU
(
f−1

Θ (x)
)
×
∣∣∣det Jf−1

Θ
(x)
∣∣∣ (13)

Examples of neural flows (flows based on neural networks) are RealNVP [94], masked autoregress-
ive flow (MAF) [95], masked autoencoder for distribution estimation (MADE) [96] and PixelRNN
[97]. Example usecases range from anomaly detection on audio data [98] to image completion [97].

4.2.5 Mixture Models

A Mixture model, or simply mixture, is a convex combination of k simpler models. Mixture
models are used the same way any model that models the underlying probability distribution is
used: numerical flow simulation [99] and discovering motifs in bipolymers [100] are two examples.

4.2.6 Tractability of non-graphical models

From worst to best in terms of supporting queries tractably, GANs do not have an explicit model
of likelihood and thus all queries are intractable. Second, VAEs have an explicit likelihood model,
but computing the probability distribution (of the latent space) is still intractable: it is an infinite
and uncountable mixture, resulting in intractable EVI queries. Thirdly, flows which also have
an explicit likelihood model (and structured Jacobians), giving rise to tractable EVI queries. If
f is a ‘simple’ function such as a bijection then MAR queries are also tractable. In the general
case, f is complicated, and thus MAR queries are intractable due to integration. Fourth, the
NADE models are similar to flows, but do not have a restriction on some function f and have
tractalbe EVI and MAR queries. Finally, mixtures can be very expressive [101]. The EVI,
MAR and CON queries scale linearly in k, and are tractable if all of the k models can do the
queries tractably. Since MAP is intractable for any latent variable model — LTMs and VAEs
are examples of latent variable models — it is also intractable for mixtures as they marginalise a
categorical latent variable Z with k values.

4.3 Probabilistic Circuits

An overview of various graphical and non-graphical models can be found in Sections 4.1 and
4.2 respectively, where we illustrated the expressiveness-tractability issue. In this Section we
introduce the probabilistic circuit (PC) family of both expressive, and tractable models (given
some structural constraints, different for each “flavour” of PC). It is important to note that PCs
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are not PGMs, even though we represent them graphically. In PGMs nodes represent RVs, edges
represent dependencies, and inference is done using conditioning, elimination or message passing
algorithms. In PCs nodes represent units of computation, edges represent order of execution, and
inference is done using feedforward and backward passes. PCs are computational graphs, similar
to neural networks: a PC C over variables X is a computational graph encoding a (possibly
unnormalized) probability distribution p(X). All PCs are representations of some underlying
probability distribution, and can thus be used for any generative task.

In this Section we will mostly focus on a particular type of PC, namely the Sum-Product Network
(SPN) [102], to explain particular notions and ideas that are identical (or very similar) for all
“flavours“ in the PC family. There are two types of basic nodes: a distribution node and a logical
node. The first, that is, a distribution node, is a node encoding (for instance) a Gaussian PDF
for some continuous RV. Distribution nodes are denoted by bell curves inside nodes. The second,
that is, a logical node, is one that encodes some sort of logical constraint such as X1 > θ (for
a real-valued X1) or ¬X2 (for a boolean X2). These basic nodes can be combined in two ways:
by multiplying them, or summing them. For multiplication there is the product node, which
establishes factorisation. This is depicted in Figure 15, showing how three RVs are the factors of
some multiplication. Summation is provided by the sum nodes which allow PCs to easily model
mixtures of various distributions, as depicted in Figure 16.

Figure 15: A product node, from [8]. Figure 16: A sum node, from [8].

4.3.1 Structural Constraints

To allow tractable inference, structural constraints on the model are required. For SPNs these
structural constraints follow from properties that product nodes and sum nodes can have, as
enumerated below. For other members of the PC family, similar and sometimes identical definitions
exist.

Decomposability A product node is decomposable if its children depend on disjoint sets of
variables. When all product nodes in a PC are decomposable, then we call the circuit
decomposable.

Smoothness Also known as completeness; a sum node is smooth if its children depend on the
same variable sets. Smoothness can be easily enforced [103]. When all sum nodes in a PC
are smooth, then we call the circuit smooth.

Determinism Also known as selectivity; a sum node is deterministic if the output of only one of
its children nodes is non-zero for any input. Determinism is illustrated in Figure 17. When
all sum nodes in a PC are deterministic, then we call the circuit deterministic.

Structured decomposability A product node is structured decomposable if it decomposes into
a vtree: a full binary tree on variables in S whose leaves have a one-to-one correspondence
with the variables in S. When all product nodes in a PC are structured decomposable, then
we call the circuit structured decomposable.
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Consistency A product node is consistent if any variable shared between its children appears in
a single leaf node. If a product node is decomposable, it is consistent. When all product
nodes in a PC are consistent, then we call the circuit consistent.

and

Figure 17: Deterministic and non-deterministic circuits, after images from [8]. The blue line
indicates what makes the left circuit deterministic.

If a circuit is decomposable and smooth, then it tractably supports answering MAR and CON
queries linear in circuit size [104]. If a circuit is decomposable and deterministic (an equivalent
condition is for the circuit to be deterministic and consistent), then MAP queries are tractable
linear in circuit size. Finally, if a circuit is structured decomposable, then all queries are tractable
linear in circuit size.

4.3.2 Tractability of various PCs

The SPN [102], which is decomposable and smooth and, therefore, tractably supports EVI, MAR
and CON queries. Even though SPNs are generally not deterministic, it is possible to learn
deterministic SPNs [105], which we then call selective. Selective SPNs are deterministic, and thus
tractably support MAP queries. The building blocks of an SPN have already been introduced,
and are shown in Figures 15 and 16. SPNs can be used for image generation or image completion
[106].

Figure 18: Example arithmetic circuit (AC), from [8].

Another PC is the arithmetic circuit (AC) [107], which is decomposable, smooth and deterministic.
As such, ACs tractably support EVI, MAR, CON, and MAP queries. ACs also utilise sum
(Figure 16) and product (Figure 15) nodes as building blocks. The leaves of an AC contain
model parameters: in Figure 18 one can see lambdas λx1, λ¬x1, λx2, and λ¬x2 which are evidence
indicators — for some boolean RV X1 the evidence indicator λx1 specifies that X1 = true — and
the thetas θ1, and θ2, which are probabilities normally found in a probability table. ACs can be
used for any generative task such as data imputation.
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Figure 20: An example PSDD, from [8].

A cutset network (CNet) [108] is the third PC we discuss. Similar to ACs, CNets are decomposable,
smooth and deterministic. Therefore, CNets tractably support EVI, MAR, CON, and MAP
queries. Structurally they are rooted OR trees with CLTs as leaves, of which an example is shown
in Figure 19. Each OR node (these are sum nodes) represents conditioning over a particular
RV. The reasoning behind CNets is that we desire a simple, tractable and scalable approach
to improving the accuracy of CLTs, which are relatively bad approximations. The usecases of
CNets are identical to those of CLTs or any other model that learns the underlying probability
distribution.

Figure 19: An example CNet, from [8].

A probabilistic sentential decision diagram (PSDD) [109] is the first PC we discuss that supports
all queries in tractable fashion: PSDDs are structured decomposable, smooth and deterministic.
An example PSDD is shown in Figure 20 where one can see that “AND” (product) nodes and
“OR” (sum) nodes are shown with their logical circuit notation. The numbers illustrate how
logical decision nodes are transformed into probabilistic ones by supplying a distribution over the
branches. Note that PSDDs are defined over boolean RVs, but by means of one-hot encoding or
binning any RV can be converted so that PSDDs can be used. The usecase of a PSDD is any
generative task.
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Figure 22: An example AoG, from [113].

p(X) =

n∏
i=1

p(Xi | Ai) (14)

Another PC is the probabilistic decision graph (PDG) [110]. These are structured decomposable,
smooth and deterministic, and as such support all queries in tractable fashion. Figure 21 shows
an example PDG. Lowercase v enumerates all nodes in the model. Uppercase Vi denotes the set of
all nodes v labelled with RV Xi. A PDG specifies a joint by the factorisation shown in Equation
14, where Ai is a partition of the product set of all possible solutions of each Xi [111]. While
this may look similar to BNs, the independence structures captured by each respective model is
different. Furthermore, PDGs can do inference in tractable fashion whereas this is generally not
the case for BNs.

Figure 21: An example PDG, from [8].

To finish up the discussion on different PCs we show the AndOrGraph (AoG) [112]. Just like
PSDDs and PDGs these too are structured decomposable, smooth and deterministic, and thus
also support all queries in tractable fashion (linear in model size). An example AoG is shown
in Figure 22, where “AND” nodes (product nodes) are square and “OR” nodes (sum nodes) are
circles. This particular example is an and-or-tree for solving 0/1 ILP [113].
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4.4 Overview

As illustrated, there are many different types of probabilistic models, some more tractable than
others. Models can be based on a graphical representation rooting in graph theory, where they
can be directed or undirected, or they can be based on deep learning. Figure 23 shows an overview
of all covered probabilistic models in terms of tractability and expressiveness. Turquoise models
support more tractable queries, black models are more expressive, and purple models are types of
PCs.
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Figure 23: Tractability spectrum. Turquoise models support more tractable queries. Black models
are more expressive. Purple models are types of PCs.

5 Combining Probabilistic Models and Process Mining

Sections 3 and 4 present the respective literature studies on infrequent behaviour and probabilistic
models. This Section is an attempt to bridge the gap between both fields, and identify where pos-
sibly interesting research lays. First, we present a method to transform a log L into a probabilistic
domain, and illustrate how such probability distribution may then be used, and how it should be
evaluated. Second, we show the similarities between discovering a process model from data, and
learning a probabilistic model from data.

5.1 From Event Data to Random Variables

Event data is stored in logs (Section 2.1.1) denoted by L. Table 1 shows three cases from a real-life
event log of sepsis — a life threatening condition typically caused by an infection — cases from a
hospital [114]. Each row contains a case identifier, an activity name, a timestamp, and finally an
integer representing the activity. Existing data attributes and XES extensions have been removed
to keep the example simple.

An initial idea is to use a categorical random vector X = (X1, . . . , Xn) with categorical RVs for
each index in the trace and n being the length of the longest recorded trace. RV Xi then denotes
a categorical probability distribution over A ∪ ⊥, where A denotes the set of all activities and ⊥
denotes “no activity”. This idea assumes that the log is complete, and that the set of possible
activities is known beforehand. Under the false assumption for the purpose of explanation that
the log as shown in Table 1 is indeed complete, there are a total of three cases, identified by E, M
and R respectively. The longest trace is E with a total of 8 activities. Let X = (X1, . . . , X8) be a
random vector of 8 categorical RVs, one per index of the trace. The sample space Ω of each Xi is
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Case Activity Timestamp Converted Activities
E ER Registration 2015-01-15 20:14:58 1
E ER Triage 2015-01-15 20:16:03 2
E ER Sepsis Triage 2015-01-15 20:17:15 3
E IV Liquid 2015-01-15 20:30:32 4
E CRP 2015-01-15 20:31:00 5
E Leucocytes 2015-01-15 20:31:00 6
E LacticAcid 2015-01-15 20:31:00 7
E IV Antibiotics 2015-01-15 20:35:59 8
M ER Registration 2014-10-10 03:08:37 1
M ER Triage 2014-10-10 03:10:38 2
M ER Sepsis Triage 2014-10-10 03:10:54 3
R ER Registration 2014-11-30 12:38:16 1
R ER Triage 2014-11-30 12:40:09 2
R ER Sepsis Triage 2014-11-30 12:40:29 3
R CRP 2014-11-30 12:45:00 5
R Leucocytes 2014-11-30 12:45:00 6

Table 1: Part of a real-life event log on sepsis patients [114].

{ER Registration, ER Triage, ER Sepsis Triage, IV Liquid, CRP, Leucocytes, LacticAcid,
IV Antibiotics,⊥}. Giving probabilities to each item ω ∈ Ω is trivially done according to the
definition of a probability measure (Equation 2) by means of counting. For instance, p(X1) is
shown in Equation 15. Not all probability distributions are as trivial. Equation 16 shows that
p(X4) is considerably more involved (within context of the example log, of course).

p(X1) =

{
1 if X1 = ER Registration

0 otherwise
(15)

p(X4) =


1
3 if X4 = IV Liquid
1
3 if X4 =⊥
1
3 if X4 = CRP

(16)

If desired, one can apply Laplace smoothing [115], alternatively called additive smoothing, which
effectively replaces true counts with pseudo-counts. Laplace smoothing is useful to avoid dividing
by zero issues when working with the empirical distribution.

Naturally, using complete activity names makes notation cumbersome. It makes sense to use
shorter identifiers in stead. For instance, if we map each event to a unique integer identifier,
starting at 1 and counting upwards, we get the fourth column of Table 1. Case E reduces to the
trace 〈1, 2, 3, 4, 5, 6, 7, 8〉, case M to 〈1, 2, 3〉 and case R to 〈1, 2, 3, 5, 6〉. These representations are
much easier to implement in code. Furthermore, traces can now be interpreted as simple integer
sequences. Similarly, any integer sequence may be interpreted as a converted log.

5.2 Method

An overview of the proposed method is presented in Figure 24. Following sections explain each
step in sequential order.
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Data Collection Log to Distribution Distribution to Log Log to Petri net

EvaluationEvaluation

Figure 24: Proposed methodology.

5.2.1 Data Collection

The first step is data collection, that is, retrieving event logs. The data collection step is depicted
in Figure 25, in which we distinguish between 3 different possibilities. The first is a ‘real-life’ log, as
recorded from some process instance. Various real-life logs are readily available on data.4tu.nl;
the earlier used event log on sepsis cases has been uploaded to said location. A second way to get
logs is to simulate a Generalised Stochastic Petri Net (GSPN) [116]. While the precise definition
is out of scope, the only important thing to realise is that with GSPNs there are no simulation
parameters that the simulation is subject to, as all information is encoded in the model. Finally,
as argued in Section 5.1, arbitrary integer sequences may be interpreted as event logs, though.

Real-life 
Process

GSPN

Integer SeqsFunction

Event Log

Event Log

Event Log

Function: Any f(x) that generates a set of integer 
sequences. These are then interpreted as event logs.

Data Collection

generates

logging

simulation

Figure 25: Data Collection

Integer sequences are readily available on OEIS [117], but these are individual sequences that
correspond to individual traces (e.g. a sequence of prime numbers, or the Fibonacci sequence).
Whilst there may be some use in considering all sequences on OEIS as coming from a single
log, we assume that this will not give interesting results. This assumption is made since the
sequences have different formulas and ideas behind them (prime numbers and numbers in the
Fibonacci sequence are thus assumed to be from a different “log”). As such, we have written an
integer sequence generator that can generate sequences of integers, available on GitHub 2 with
documentation both in source code and available online 3. There are two main files, one being
the integer sequence generator, and the other being a XES converter that takes an XES file and
returns an integer sequence.

2See https://github.com/dbarenholz/integer_sequence
3See https://dbarenholz.github.io/integer_sequence/generator/index.html
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5 COMBINING PROBABILISTIC MODELS AND PROCESS MINING

5.2.2 Log to Distribution

To learn probability distributions from logs, one can use the conversion to probability spaces as
explained in Section 5.1, which effectively computes the empirical distribution. Recall that using
(or even representing) a full joint distribution may not be feasible due to the curse of dimensionality,
as illustrated in Section 2.2.7. By converting from log-space to probability-space, logs can be seen
as datasets consisting of samples from some unknown but interesting probability distribution that
we want to learn, which is precisely the setting of many of the probabilistic models. Learning these
probabilistic models, however, can be non-trivial: for models based on neural networks (Sections
4.2 and 4.3) it is simply the act of training that learns (how to represent) the distribution, but
for graphical models one needs to learn both the model parameters, as well as the structure of the
underlying graph.

If a graphical model (Section 4.1) has an explicit likelihood formula — a likelihood (L) describes
the joint probability of the observed data as a function of the parameters of the chosen statistical
model — one can use the maximum likelihood framework to learn parameters [118]. For instance,
in BNs log-likelihood decomposes as shown in Equation 17. For MNs however, log-likelihood
does not decompose as illustrated in Equation 18. Whether or not (log) likelihood decomposes
is important for speed of computation: when likelihoods decompose to local ones, its easier to
computer than if this is not the case.

L =

n∑
i=1

log p(xi)

=

n∑
i=1

log
∏
X∈X

p(xi
X | xi

pa(X))

=

n∑
i=1

∑
X∈X

log p(xi
X | xi

pa(X))

=
∑
X∈X

LX :local log-likelihood for X︷ ︸︸ ︷
n∑

i=1

log p(xi
X | xi

pa(X))

(17)
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log f
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− logZ

=
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(
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)
−
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(
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)
(18)

When it comes to learning structure, we differentiate between learners based on conditional inde-
pendence tests (CI-based learners) and those based on optimising a score (score-based learners).
The CI-based structure learning requires many conditional independence tests, which are not very
reliable on finite datasets. An example of a CI-based learner is the (R)FCI algorithm [119], which
avoids computing redundant (if some RV A is independent from some RV B, then we no longer
need to test if B is independent from A) conditional independence tests. Still, score-based learners
are much more prominent. A score-based learner views structure learning as discrete optimisation,
where the goal is to find G∗ = arg maxG∈[G] S(G,D), where [G] is a family of graphs over the RVs

in X and S(G,D) is a suitable score defined on a graph and input data D =
{
xi
}n
i=1

consisting of
n samples. An example of a good score is the minimum description length as shown in Equation
19, which trades off log-likelihood (L(G,Θ, D)) with the size of parameter space (Θ), weighted by
the logarithm of the number of samples [120].

SMDL = max
Θ
L(G,Θ, D) +

log n

2
· |Θ| (19)

When working with event data, D represents an entire log, and a single sample xi represents a
trace. Such a trace, as explained in Section 5.1, is a categorical random vector xi = (X1, . . . , Xm)
with categorical RVs Xj for each index 1 ≤ j ≤ m in the trace, and m being the length of the
longest recorded trace.
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It is interesting to note here that structure learning using score-based learners is a similar problem
to PD. To reiterate the problem of a score-based structure learner: findG∗ = arg maxG∈[G] S(G,D),
where [G] is a family of graphs over the RVs in X and S(G,D) is a suitable score defined on a graph
and input data D =

{
xi
}n
i=1

consisting of n samples. In simpler terms: “Find some graph from
a family of graphs that is best according to some scoring function based on data”. By replacing
the term graph with process model, we effectively end up at the process discovery problem. The
main difference between the two problems, is that PD algorithms in most cases fail to leverage
the true underlying probability distribution, whereas representing said distribution is done with a
probabilistic model for which a structure is learned.

5.2.3 Distribution to Log

Converting a distribution back to a log can be done by means of incremental inference, where one
can distinguish between which behaviour is desired to convert: for frequent behaviour one takes
activities with high probability, whereas for infrequent behaviour one can set thresholds such that
only activities with low probability are used. The main idea of incremental inference is to, for
each activity at index i in a (new) trace, compute the probability distribution of Xi given its
predecessors. For instance, if we have already decided that a starting activity is a and a second
activity is b, and we are interested in the third activity, then we compute p(X3 | X1 = a,X2 = b).

By converting the learned distribution back to an event log, one can consciously decide on which
behaviour (frequent vs infrequent) is interesting, and consequently which behaviour is not desired.
Comparing the converted event log to the original one may give meaningful insights into precisely
which behaviour was filtered and whether or not this was desired, though further investigation is
necessary. It may also be interesting to compare process models mined (using any PD method,
preferably one that does not filter behaviour) on the original event log and the converted one, but
again further investigation is needed.

Event LogLearned 
Distribution

Conversion from distribution to event log

Incremental 
inference

Idea: Find ? for <a, b, ?>

Figure 26: Converting a distribution to a log: incremental inference.

It is important to see that there are fundamental differences between evaluating log-model, log-
log, model-model, and distribution-distribution. The first corresponds to the classical conformance
checking idea (Section 2.1.3): measure how well a particular model represents the log it was learned
on. In [121] they propose a method to evaluate log-model in a stochastic manner: by annotating
the log with empirical probabilities (converting the log into a stochastic language), they construct
a reallocation matrix describing the probability mass required to move between log and model, and
then use said matrix to derive the Earth Movers’ Stochastic Conformance measure. The measure
defined in the paper is based on the Earth Movers’ Distance, which is a method to evaluate
similarity between two distributions [122]. Evaluating on a distribution level (described in Section
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5.2.4) is done to find whether or not the used probabilistic model properly learned the underlying
true distribution.

The methodology in [121] is one of the few conformance checking methods (that we are aware of)
that can also be applied on a log-log (and model-model level), by tweaking the underlying definition
of a reallocation matrix. Comparing log-log in our method can be powerful to investigate what
happens precisely to an input log. It should be able to show which traces have effectively been
filtered out.

5.2.4 Evaluation on Distributions

Given some learned distribution p̂, it is paramount to evaluate how well this distribution describes
the true distribution. Since the true distribution is unknown, the best we can do is compare
it to the empirical distribution p that is created by counting (or pseudo-counting with Laplace
smoothing) in the original event log. Comparing two distributions is done by computing their
divergences. The most well-known divergence is the Kullback-Leibler divergence, also called re-
lative entropy. Equation 20 shows how it is computed in a discrete case. It measures how one
distribution is different from a reference distribution. The KL-divergence is asymmetric, meaning
that DKL(p||p̂) 6= DKL(p̂||p).

DKL(p̂||p) =
∑
x∈X

p̂(x) log
p̂(x)

p(x)
(20)

Another option that has interesting interpretations is the Jensen–Shannon divergence, shown in
Equation 21, which is essentially a smoothed version of the KL-divergence. In particular, it is the
mutual information between X associated to a mixture between p and q, and binary indicator
Z used to switch between p and q to produce the mixture. As such, it is bounded by 0 and 1,
assuming log2 (which makes interpretation nice, as opposed to ‘unbounded’ KL-divergence). An
alternative interpretation of the Jensen-Shannon divergence is the average relative entropy of p
and q to the entropy of the average distribution m = p+q

2 .

DJSD(p||p̂) =
1

2
DKL(p(x)||m(x)) +

1

2
DKL(p̂(x)||m(x) , m =

1

2
(p(x) + p̂(x)) (21)
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Figure 27: Evaluation on distributions: divergences.
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6 Discussion

This section discusses the work that has been done. In particular, we look at possible issues with
the methodology presented in Section 5.2 and argue in which cases it can and cannot be used.
This argumentation can be found in Section 6.1. In Section 6.2 we quickly touch on the relation
between infrequent behaviour, and the proposed methodology. We finish the discussion by looking
at tasks that can be investigated another time in Section 6.3.

6.1 Threats to validity

The first problem is one fundamental to any learning task that attempts to learn from (real-life)
data: there may not be enough data to learn from, and the data may not be accurate. To illustrate,
suppose that M depicted in Figure 28 is a known model, say from domain knowledge, for some
process. Assume that this process was something from the past, and that there are no new events
to be logged e.g. the process is finished, and let L =

{
〈a, b, c, d〉5, 〈a, c, b, d〉5

}
be the corresponding

log. Notice how it exists of only 10 traces. Looking at M it is clear that 〈a, b, b, d〉 〈a, c, c, d〉 are
perfectly valid traces, but they are not present in L. Since they are not present in L, which is the
empirical data, there is no possibility for any learning algorithm to learn the correct M .

a

p1 p2

d

end

cb

p0start bc

Figure 28: Example true model M .

Not only does this data problem manifest on the process discovery level, it manifests in prob-
ability as the way we (naively) compute empirical distributions is by (pseudo-) counting (recall
the frequentist definition of probability shown in Equation 1, and see Section 2.2.2 on how this
is applied to log data). More importantly, when learning a probability distribution only on the
event log, we ignore domain knowledge that we may have: First, it can be the case that there is a
partial process model for which we already know it is correct, and we wish to extend it. Second,
by converting event data to RVs as proposed in 5.1 we ignore the fact that L may have known
block structure. The current methodology as cannot work with domain knowledge in either case.

6.2 Infrequent behaviour

In Section 5.2.3 we propose a method that can convert a (representation of a) learned probability
distribution to an event log by means of ‘incremental inference’. This method allows choice for
what behaviour (based on frequency) is deemed interesting, and then filters the behaviour that is
unwanted by the process analytics expert. The filtered log can then be used by any PD method,
without further filtering as all information present is already interesting, to learn a process model
on only behaviour that is interesting. This filtering method may be particularly interesting to
integrate with any PD method that guarantees a fitting model, such as the ILP Miner [49]: by
doing so, one can create a model fitting to the behaviour that is interesting.

6.3 Future work

There are quite some interesting areas of research that one may dive into when it comes to com-
bining the fields of probability and process discovery. While out of scope for this work, it is highly
interesting to look at how infrequent behaviour is handled in process streaming algorithms such
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as Competition Miner [123]. It is most likely non-trivial to decide which behaviour is infrequent,
when not all behaviour has yet been seen.

A second avenue of research that may be looked at is using probabilistic models (in particular
causal networks, where there is a clear interpretation besides only ‘dependency’) as a direct output
of a discovery algorithm. It is interesting to see how such models would be evaluated, and whether
or not they can model more or less types of behaviour (some process models are better used for
block-structured data – how this would translate to a probabilistic model seems an interesting
research question).

In stead of considering probabilities directly on the event log, one might consider probability on
the (process) model structure instead. When using one of the discussed discovery methods that
discover a petri net, it would be interesting to enhance such method with the underlying empirical
distribution to see what differences it makes on the resulting model structure, and whether or not
it can then directly mine models where frequencies are encoded, such as a generalised stochastic
petri net.

As final idea for future work: in BNs there is the notion of independence. If there are there certain
independence assumptions that are known to hold beforehand, perhaps these can then guide some
discovery algorithm. This connects with the threat to validity of ignoring domain knowledge: if
we have certain dependencies known, one could simply design a BN as model, and only learn its
parameters using any applicable learner. Speaking of dependency: within a process view, there
is only a dependency when there is some choice to be made within a process. Perhaps these
dependencies are directly related to a probabilistic dependency in a model.

7 Conclusion

In this work we showed how infrequent behaviour is handled in process discovery (Section 3)
which is concluded in Section 3.2 (RQ 1). State of the art algorithms may filter behaviour for
various reasons, on various levels, or not at all. Another point of contribution is a classification of
different types of probabilistic models (Section 4), all of which can be used to model the underlying
distribution of a dataset. We show a methodology that leverages probability distributions and
inference to generate a new event log (Section 5.2), on which any PD algorithm can be run to find
a process model. Finally, in Section 6.3 we illustrate various interesting items of research that as
far as we are aware have not yet been extensively looked at. Due to time constraints and other
reasons we did not get to RQ 2 or RQ 3; please see Appendix B for a brief reflection on why this
the case.
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[75] B. Uria, M. Côté, K. Gregor, I. Murray, and H. Larochelle, “Neural autoregressive
distribution estimation,” CoRR, vol. abs/1605.02226, 2016. [Online]. Available: http:
//arxiv.org/abs/1605.02226 21

[76] B. Uria, I. Murray, and H. Larochelle, “Rnade: The real-valued neural autoregressive density-
estimator,” in Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 2, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc.,
2013, p. 2175–2183. 21

[77] S. Lauly, Y. Zheng, A. Allauzen, and H. Larochelle, “Document neural autoregressive
distribution estimation,” CoRR, vol. abs/1603.05962, 2016. [Online]. Available: http:
//arxiv.org/abs/1603.05962 21

[78] B. Uria, I. Murray, and H. Larochelle, “A deep and tractable density estimator,”
in Proceedings of the 31st International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32,
no. 1. Bejing, China: PMLR, 22–24 Jun 2014, pp. 467–475. [Online]. Available:
http://proceedings.mlr.press/v32/uria14.html 21

[79] Y. Zheng, Y.-J. Zhang, and H. Larochelle, “A deep and autoregressive approach for topic
modeling of multimodal data,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 38, no. 6, pp. 1056–1069, 2016. 21

[80] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription,”
arXiv preprint arXiv:1206.6392, 2012. 21

[81] Y. Zheng, R. S. Zemel, Y.-J. Zhang, and H. Larochelle, “A neural autoregressive approach
to attention-based recognition,” International Journal of Computer Vision, vol. 113, no. 1,
pp. 67–79, Sep. 2014. [Online]. Available: https://doi.org/10.1007/s11263-014-0765-x 21

[82] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org. 22

[83] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online].
Available: http://arxiv.org/abs/1312.6114 22

[84] A. Subramanian, “Pytorch-vae,” https://github.com/AntixK/PyTorch-VAE, 2020. 22

[85] R. Peharz, “Lecture slides: Variational autoencoders 2,” May 2021. 22
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Acronyms

AC arithmetic circuit. 25, 26

AoG AndOrGraph. 27

BN Bayesian network. 18–20, 27, 31, 35

CLT Chow-Liu tree. 18–20, 26

CNet cutset network. 26

CPD conditional probability distributions. 18

CPN Coloured Petri net. 4

DAG directed acyclic graph. 10, 12, 17, 18

GAN generative adversarial model. 22, 23

GCN graph convolutional network. 1, 2, 16

ILP integer linear programming. 10, 14, 15, 27

LTM latent tree model. 20, 23

MADE masked autoencoder for distribution estimation. 23

MAF masked autoregressive flow. 23
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Acronyms

ML machine learning. 1, 3, 10, 12, 14–16, 21

MN Markov network. 19, 20, 31

NADE neural autoregressive distribution estimation. 21, 23

PC probabilistic circuit. 23–28

PD process discovery. 1–4, 6, 10–17, 32, 34, 35

PDF probability density function. 7, 24

PDG probabilistic decision graph. 27

PGM probabilistic graphical model. 17, 20, 24

PMF probability mass function. 7

PN Petri net. 1, 4, 5, 11, 12, 15, 16

PSDD probabilistic sentential decision diagram. 26, 27

RNADE real-valued neural autoregressive distribution estimator. 21

RV random variable. 3, 7, 9, 17, 18, 20, 24–28, 31, 32, 34

SPN Sum-Product Network. 24, 25

TJT thin Junction tree. 19, 20

VAE variational auto encoder. 22, 23

WF-net workflow net. 4
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Reflection

This section has two purposes: first, it contains a reflection on the things learned during the
internship, and second it contains an explanation as to why research questions RQ 2 and RQ
3 remain unanswered. As it is mostly a personal reflection, it is written from a first-person
perspective.

Feedback to myself

I will use a simple enumeration for the points of feedback that I would like to take with me for
future future research projects. The first two points can be classified as time management,
whereas the other points are scientific method.

1. Structuring a report takes time. In fact, more time that I had initially thought. By not
being aware of this fact, it felt that at times I had very little progress, which annoyed me and
was detrimental to my mental health. In future research, I should be aware that things may
take more time than expected, and should be resilient to such changes from expectation.

2. Writing 6= editing. Starting to write is hard. It is easier (to me) to first create an outline
(which takes time), and then keep adding bullet points until a proper structure presents itself.
Only then should I start writing sections, and not edit. Editing should be done afterwards,
where I go over the entire text, and mark where I dislike sentences for whichever reason.
Then, I can process these remarks and edit the text to my liking. Both writing and editing
take more time than expected, especially when being a perfectionist to a certain degree.

3. There exists a scientific method, which I only found out about during the final stages of
implementing feedback. I should definitely read up on said methodology, since it will prevent
some of the mistakes I made during this project (such as solving the wrong problem, and
doing the difficult thing before doing the easy thing).

4. Understand the problem, before trying to make a solution. This is something I did
plainly wrong during the internship. I should not hurry doing research, but in stead ensure
that I have a good understanding of the topics and the problem there is at hand. Explicitly
writing down said problem, and evaluating whether or not it is a “research problem” or
specific “research question” will help me tremendously. This links back to using the scientific
method that exists, but did not know about.

5. Do easy things before doing hard things. I SHOULD NOT make a problem more
complex than it is. There will most likely be things that I can do that are relatively easy,
and will help me gain a better understanding.

Why research questions are unanswered

This internship was my first real research project, and I started with it not knowing anything
about research methodologies and best practises. As such, I have made many ‘mistakes’ that one
might encounter when not following any guideline, as present in above section of ‘feedback to
myself’. The reason why I did not manage to answer all questions is due to said mistakes.
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