Technische Universiteit
Eindhoven
University of Technology

Date

June 3, 2018 Final report

CPPS track

Barenholz, D. (0998941)
d.barenholz@student.tue.nl

Where innovation starts

Table of contents

TU/e

Technische Universiteit
Eindhoven
University of Technology

Title
Final report

Where innovation starts

Introduction to CPPS
1.1 Competitive Programming . .
1.2 Problem Solving

1.3 The Honors Track

Practice
2.1 Practising tools

2.2 Practice done

Contests

3.1 Types of contests
3.2 Algorithmical: EAPC
3.3 Al Battlecode
3.4 Engineering: Google Hashcode

Seminar

Appendix A Written Code

A.1 Code for BAPC10D - Collatz .

A.2 Code for BAPC10I - Keylogger

A.3 Code for BAPCI12E - Encoded Message

A4 CodeforCD.

A.5 Code for Help Me With The Game

A.6 Code for Emag Eht Htiw Em Pleh

A.7 Code for EAPC17D - Disastrous Doubling

Appendix B EAPC Cheatsheet

Appendix C Seminar Slides

DN N = -

18
18
18
20
22

24

27
27
27
29
30
31
38
44

45

66

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Contents of the report

Within this report I will write about the CPPS track. In the first section I will give an overview
of what CPPS means and explain how the Honors track is organised. Afterwards, an outline of
practising tools and practice done will be given. Then, an explanation of different types of com-
petitions is given with reports on competitions that I participated with. Finally, an explanation
of my seminar topic can be found.

1 Introduction to CPPS

CPPS, which stands for Competitive Programming and Problem Solving, is one of the many
tracks that the Honors Academy at Eindhoven University of Technology has to offer. I applied
for the CPPS track since I wanted, and still want, to learn more about how people solve algo-
rithmical problems and because I really enjoyed participating in my first programming contest.
Another reason, although absent in my letter of application, is because I feel that programming
should be a skill that everyone has the opportunity to acquire to some degree. Competitive
programming at its core can be used, for example in secondary school, to introduce how fun
programming (and problem solving) can be. This way, there will hopefully be more people
who can write clean code, which should increase coding quality overall. I will now explain
what competitive programming actually is, as well as the idea of problem solving.

1.1 Competitive Programming

As Shakespeare once said, "What’s in a name?", one may be wondering what competitive
programming actually is. The mainstream idea of what programming is, is to write code for
some kind of program. This program can be many things. Your web browser, e-mail clients
and applications such as Microsoft Word, Adobe After Effects and Angry Birds are just a few
of the millions of possible examples. Still, for every single one of these programs, there is
one universal thing that holds. Someone, a programmer, had to write some code in order for
it to work. However, programming itself doesn’t have to be necessarily for an application
per se. There can be other use cases for programming, for example, showing off your skills
by generating a supposedly infinite number of prime numbers using only 53 bytes'or by a
one-liner that converts any decimal number X to binary.?Another part of programming is that
isn’t always necessarily serious. A tribute to that fact are the programming languages called
Whitespace (where one programs using spaces, tabs and enters) and Brainfuck (which works
using only 8 characters). Of course, a programmer doesn’t know all of these things by hard.
We have Google. Perhaps the search engine can help out here to explain what competitive
programming is?

I'C code to do this: main (m, k) {for (m%k-2: (k=m++) ; k" 12 printf ("$i|", m)); }
2 JavaScript code to do this: (_$= (S, _=[1+[1)=>S$2_5(S»+! ! [1, (S&+!1[]1)+_) _) (X)

Barenholz, D 1

Technische Universiteit
TU /e G)
University of Technology F]nal report

competitive programming
lkam ' petriIvi «) /' praugramin/ 4
adjective noun

adjective: competitive noun: programming

1. relating to or characterized by competition. 1. the process of writing computer programs.

ruthless, merciless, agoressive, fierce; More i . . 3
anfonyms: gentlemanly 2. the process of scheduling something, especially radio or television programmes.
- having or displaying a strong desire to be more successful than others. g : ik

.....

- radio or television programmes that are scheduled or broadcast.

mbitious, driven, vying, combative, contentious, aggressive; More
=~ apathetic

petter than others of 2 comparable nature.
compefitive with any in the worl d

wvell with those of rival traders.

rvice at ates
= reasonable, moderate, economical, keen; More
=- exorbitant, uncompefitive

(a) define:competitive (b) define:programming

Figure 1.1: Search queries in Google.

When combining both definitions, you may get that competitive programming is writing a bet-
ter piece of code than others. This isn’t too far from its actual meaning, but it raise the question
what better code means. Is the shortest piece of code the best? Or is it the most human-
readable piece of code? There’s no real definition for better code, which is where you, as
an aspiring programmer, decide to take action yourself and Google competitive programming.
You immediately stumble upon Wikipedia [1] and find that competitive programming is a mind
sport usually held over the internet or a local network, involving participants trying to pro-
gram according to provided specifications. 1 won’t continue to bore you by a Google query of
specifications and then any other unknown words in this definition, however, I will tell you that
this explanation of competitive programming is pretty close to its actual meaning. In essence,
competitive programming is a contest or competition with multiple participants or competitors.
The tasks and setup of a contest may vary, but with all of them there is some kind of problem to
solve, and the participants write their code, either in group or alone, and submit their solution
to the problem. The better piece of code is then the code that gives a better solution to the
problem, or it is the piece of code that runs fastest. Of course, you can’t participate in a pro-
gramming competition and expect to do amazing if all you know is a programming language.
You need the skill of problem solving to solve the problem(s) that are presented to you during
a contest.

1.2 Problem Solving

I will explain the idea of problem solving, in the context of competitive programming, based
on what I did to explain, or rather find a definition for, competitive programming itself. The
problem that 1 solved was to find a definition for competitive programming. The way 1 solved
that problem, is by doing certain things, in a certain order. This is the basis for any algorithm.
An algorithm to code is what a recipe is to your favourite dish. It explains, step-by-step, how
to solve a problem, which can be making your favourite dish. Within the world of competitive
programming, an algorithm is a recipe that you can follow to solve a problem. Note that
algorithms are usually written in pseudo-code. Examples will be encountered throughout this
report, but here is the pseudo-code of the algorithm used to find a definition for competitive
programming.

Barenholz, D 2

N QA T R W N

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Algorithm 1: myAlgo (String findADefForThis)

Input: A compound sentence of one or multiple words.

Output: A definition for findADefForThis.

Procedure myAlgo (String findADefForThis)
L <« List of definitions of words
for word W in findADefForThis do
Find definition D of word W
Add Dto L
end
return new definition created using L

Of course, above example is not what CPPS offers, it is merely an introduction to the concept
of problem solving. I now present a possible problem that CPPS students can solve, in the same
format as we get them.

Problem: BAPC10D - Collatz

Problem

In the process to solve the Collatz conjecture, better known as the 3n + 1 problem, Carl created
a physical model with wood and ropes. A wooden bar contains a hole for every natural number
from 1 to infinity from left to right. For every even number m there is a rope connecting the
mth hole with hole 3. For every odd number n there is a rope connecting the nth hole with
hole 3n + 1. For an important conference where Carl plans to elaborate on his results, he wants
to bring his structure, but it is too large to fit in his bag. So he decided to saw off the part of the
bar containing the first /V holes only. How many ropes will he need to cut?

Input
The first line of the input contains a single number: the number of test cases to follow. Each
test case has the following format:

e One line with an integer N, satisfying 0 < N < 10°.

Output
For every test case in the input, the output should contain a single number, on a single line: the
number of ropes that need to be cut.

Example

Input Output
3 10

12 200
240 3000
3600

Barenholz, D 3

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Solving: BAPC10D - Collatz

When solving this kind of problem, there are some steps that you usually go through.

1. Read the problem.
By reading the problem, you know what information there is and what you’re trying to
solve. In this case, you know there is some structure Carl made that consists of ropes that
need to be cut, and you’re trying to find the minimum number of ropes that he needs to
cut.

2. Guess the time complexity.
When you look at the input, you see that 0 < N < 10°. This means that a linear O(n)
solution is likely too slow. Thus, you’re supposed to find a constant time O(1) solution.
In this case, it means that you’re looking for some kind of function of m,n and N.

3. Find a solution.
The next logical step would be to find, in this case, the function. Depending on how good
you are with logical thinking, this may take a very long time to figure out, or you may
see it immediately. However you find the solution, one thing should be clear, which is
the fact that you need to compute how many ropes there are in the structure. But even
this computation isn’t straightforward at first glance. You have to differentiate between
odd n and even m in following way:

e Compute the number of ropes from m to 2m with m < N and N < 2m.
e Compute the number of ropes from n to 3n + 1 withn < N and N < 3n + 1.

By going through both of these cases, you compute the total number of ropes in the
structure. Now, you can, with some thinking, find that in total there will be % ropes cut,

where k equals to:
N—
N Ly
2 2 2
4. Code the solution.

The next and final step is to put your solution into code. This isn’t always straightforward.
In the case of the Collatz problem, it is straightforward. In fact, it’s even easier than I
described the solution to be. There is, in fact, no need to compute any number of ropes.
The only thing that should be done is computing the above equation. Please see the
appendix for Java and Python code on how this is done.

Barenholz, D 4

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

1.3 The Honors Track

The CPPS track gives you, as student, the opportunity to pursue competitive programming and
problem solving. In contrast with other Honors tracks offered by the Honors Academy, the
CPPS track doesn’t have a team-based project. In stead, students are challenged to take the
lead in their own development of problem solving. You are given a great amount of freedom
due to the lack of a project, which comes with its respective responsibility.

The CPPS track is organised in following way. Throughout the year, there are several general
meetings. At the first general meeting, all students are divided into teams of 3 people. Two
teams make up a supergroup. Each supergroup has biweekly meetings with their respective
coach, where they discuss their current progress. These meetings are the perfect time for stu-
dents from different teams to learn from each other. Team A may have solved some problems
that team B hasn’t. Within these meeting solutions to these problem are explained, together
with the thought process behind them.

In the first quarter, the general meetings exists of preparation for the EAPC (a programming
contest) and lectures on specific programming topics, such as dynamic programming, graph
algorithms and computational geometry. General tips on how to program during a contest are
also given. In the second and third quarter, students get to choose from a variety of topics and
are required to give a seminar on their chosen topic. Finally, in quarter four, students write their
final report and will be assessed.

Throughout the whole year, students are expected to be training for, and participating with,
programming contests. In the following sections I will explain how you can train for contests
and what types of contests there are.

Barenholz, D 5

Technische Universiteit
e Eindhoven
University of Technology

Final report

2 Practice

2.1 Practising tools

1. K2 Server @ https://compprog.win.tue.nl/problems

K2

Short name T

BOZA

BAPCO7B

BAPC10A

BAPC10B

Name

Penguin Bashing

Collatz

Wrong Answer

Quick out of the Harbour

Bus Pass

Gene Shuffle

Top 2000

Solved?

Search K2
Search

Solved by

14

59

27

21

12

30

10

Attempted by

18

62

30

36

14

32

21

Figure 2.1: The problems page of the K2 server

The K2 server, also known as the compprog server, is a server specifically designed
for students from the CPPS honors track. It contains most of the problems of all EAPC,
BAPC and NWERC competitions, as well as the problems of competitions organised by

the honors students themselves.

2. Kattis @ https://open.kattis.com/problems

Kattis

PROBLEMS

. Submit

Daniél Barenholz
Score: 86.4, Rank: 2721

Problems

) SOLVED | @ TRIED | @ UNTRIED
NAME - TOTAL
0-1 Sequences 3782
10Kinds of People 6326
2048 4342
3D Printed Statues 2911
3D Printer 299
3-Sided Dice 1286
4 thought 4029
A1 Paper 2880
Aaah! 13734
Abandoned Animal 629
4446
Above Average 1570
A+B Problem 3543
A Brief Gerrymander 103
act Art 152
rdistan Roads Il 454
rdistan Roads Il 1040
A Classy Problem 4453
ACM Contest Scoring 3919

SUBMISSIONS

ACC.
592
1385
2104
1442

5
89
1370
857
6693
108
2094
683
348
20
34
162
272
1180
2426

RATIO
16%
22%
48%
50%
17%
7%
34%
30%
49%
17%
47%

10%
19%
22%
36%
26%
26%
62%

FASTEST
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.04
0.15
0.00
0.00
0.02
0.01
0.00

TOTAL
757
1097
2003
1350
92
204
1362
835
5826
133
20mM
715
524
21
30
153
259
1020
2110

1705
121
44
il
1132
650
5421
93

1818

RATIO
53%
69%
85%
90%
48%
35%
83%
78%
93%
70%
90%
90%
35%
57%
77%
67%
73%
78%
95%

RsS feed for new problems

DIFFICULTY
7.0 L [l
4.8 A]
2.6 i sl
2.0 F A el
8.2 L el
8.8 L el
2.9 L el
3.5 L [l
16 g]
57 i sl
17 F A o)
19 L el
84 L]
7.2 L el
54 &]
6.8 L)
6.0 i sl
42 & o]
15 L i

Figure 2.2: The problems page of the Kattis server

Barenholz, D

https://compprog.win.tue.nl/problems
https://open.kattis.com/problems

T Technische Universitei
U e Ul:ive:)s‘?f;‘oﬂechnology Final rep()rt

The Kattis server is one I include on this page because of its huge database of problems.
All problems come from some kind of programming competition. Apart from that, it
hosts competitions on a regular basis.

3. Geeks for Geeks @ https://www.geeksforgeeks.org/

(; (_‘(_'l\'fil‘()l'(;(_‘(_‘ ks ‘ Google Custom Search ‘“

26 Algo ¥ DS¥ Languages ¥ Interview ¥ Students ¥ GATE ¥ CS Subjects ¥ Quizzes ¥ GBlog Puzzles

A computer science portal for geeks

What's New?

Geeks Classes in Noida Featured Article
der Su £2 Nodein Bi Tr Trending Content
Ig;i?;z?ée%cs rer ceessorota €1 bmary 11ee Python List , Set , Tuple & Dictionary

Given a binary tree and a node in the binary tree, find preorder m
successor of the given node. Examples: Consider the following

Number Theory
Coding Practice

Set to Array in Java

How to write an Interview binary tree 20... Read More » BFS . DFS
Experience?
Tree Binary Tree Preorder Traversal School Programming
Must De Coding Questions —
Company-wise Longest Repeated Subsequence

i) Longest Palindromic Subsequence
Must De Coding Questions

Topic-wise . Detect a negative cycle
Featured Article
a . . . GATE CS Notes
ity s Print the longest leaf to leaf path in a Binary tree
. : Reverse a linked list
Basic The diameter of a tree (sometimes called the width) is the number 3

Easy of nodes on the longest path between two end nodes. In this post,
- -.. Read More » Most Visited Posts
Medium
Tree Binary Tree Top 10 Algorithms and Data Structures for
Hard - Competitive Programming
Expert Top 10 algerithms in Interview Questions
Popular T How to begin with Competitive
opular fags Featured Article Programming?
PR TS D e Number of single cycle components in an undirected graph Step by Step Guide for Placement
Programming, Samsung P i
Click here for more Given a set of 0’ vertices and ‘'m’ edges of an undirected simple m reparation
graph (no parallel edges and no self-loop), find the number of How to prepare for ACM-ICPC?
nterview Preparation . . .
= single-cycle-components... Read More » Insertion Sort | Binary Search , QuickSort |
Step by Step Preparation MergeSort , HeapSort

Graph Greedy DFS graph-connectivity graph-cycle
Company Preparation o o

Figure 2.3: The home page of www.geeksforgeeks.org.

Geeks for geeks is a site with a ton of information. It contains articles on many known
problems, of various types. Solutions are most of the times provided in C++, Java and
Python. This site will popup in your Google searches for a problem.

Barenholz, D 7

https://www.geeksforgeeks.org/
www.geeksforgeeks.org

T Technische Universiel
U e Ulr:‘ive?s‘?:/"of'rechnology Final rep()rt

4. Stack Overflow @ https://stackoverflow.com/questions?sort=frequent

N _ —

§ stackoverflow Questions Developer Jobs Tags Users Search O 9 e s Log In

All Questions newest featured frequent votes active unanswered 1 ,501 ,382
questions

211 What is a NullPointerException, and how do | fix it?

votes What are Null Pointer Exceptions (java lang NullPointerException) and what causes them? What BLOG
methods/tools can be used to determine the cause so that you stop the exception from causing the program
0 Public Data Release of Stack
Overflow's 2018 Developer Survey

java nullpointerexception community wiki
Ziggy

1.9m

views

We have 7 open jobs ¥

4156 How do | return the response from an asynchronous call?

votes | have a function foo which makes an Ajax request. How can | return the response from foo? | tried returning - -

the value from the success callback as well as assigning the response to a local variable

33 javascript ajax asynchronous ecmascript-f ecmascript-2017 asked Jan & 13 at 17:06
answers R ING
Felix Kling I}
1.0m 506k » 118 =304 #3850
views 5] - 2

Finance, Banking Public 10k+ people
2325 How to make a great R reproducible example?

votes When discussing performance with colleagues. teaching, sending a bug repert or searching for guidance on Our tech stack
mailing lists and here on SO, a reproducible example is often asked and always helpful. What
23 JEVEN devops open-source agile mobile
r rfag community wiki - - — .

answers 13 revs. 9 users 46% nancial scrum cloud app spring
- Hack-R

2USK

views Meaet our team
2782 How can | prevent SQL injection in PHP? z Flavia Sequeira

votes If user input is inserted without modification into an SQL query, then the application becomes vulnerable to

28 SQL injection, like in the following example: Sunsafe_variable = $_POST['user_input]; ... Janna Brummel

php mysgl sgl security sgl-injection community wiki
44 revs, 36 users 14%

1.4m Andrew G. Johnson saltandpepper

views
1324 RegEx match open tags except XHTML self-contained tags I Learn mare

votes | need to match all of these opening tags: <p= <a href="foo"= But not these:
 <hr class="foo" /> | came

Figure 2.4: Most frequent questions on Stack Overflow.

Another website which will most definitely show up in Google searches whenever you
occur an error, or when you’re looking for something specific. It’s part of a network of
extremely useful sites. There is a math overflow for your math related problems and a
tex overflow for your ISIEX related problems.

2.2 Practice done

Throughout the year I have solved a few problems on the K2 server. I first give an overview of
all solved questions this server, and then go into detail for some of them. Afterwards I show
my progress on Kattis in the same manner.

Barenholz, D 8

https://stackoverflow.com/questions?sort=frequent

Technische Universiteit
TU /e G)
University of Technology F]nal report

K2 Server
Short name Name Solved? L
B10D Collatz v
BAPC10D Collatz v
BAPC10I Keylogger v
BAPC12E Encoded Message v
BAPC13F Flying Safely v
EAPCOSH Venus Rover v
EAPC12A Annoying Mosquitos v

Figure 2.5: Solved questions on K2 server

I have already explained the Collatz problem (BAPC10D) earlier, so we won’t look at it again.
In stead, I will look at the Keylogger and Encoded Message problems and provide pseudocode
to solve both.

Problem: BAPC10I - Keylogger

Problem

As a malicious hacker you are trying to steal your mother’s password, and therefore you have
installed a keylogger on her PC (or Mac, so you like). You have a log from your mother
typing the password, but unfortunately the password is not directly visible because she used
the left and right arrows to change the position of the cursor, and the backspace to delete some
characters. Write a program that can decode the password from the given keylog.

Input
The first line of the input contains a single number: the number of test cases to follow. Each
test case has the following format:

e One line with a string L, satisfying 1 < Length(L) < 1.000.000, consisting of:
— ’—' representing backspace: the character directly before the cursor position is
deleted, if there is any.

— <’ (and ' >") representing the left (right) arrow: the cursor is moved 1 character
to the left (right), if possible.

— alphanumeric characters, which are part of the password, unless deleted later. We
assume aAYinsert mode’: if the cursor is not at the end of the line, and you type

Barenholz, D 9

o 0 N At AR W N =

11
12
13
14
15
16
17
18
19

Technische Universiteit
TU /e G)
University of Technology Flnal report

an alphanumeric character, then all characters after the cursor move one position to
the right.

Every decoded password will be of length > 0.
Output

For every test case in the input, the output should contain a single string, on a single line: the
decoded password.

Example

Input Output

2 BAPC
«BP<A»Cd- ThIsIsS3Cr3t
ThlsIsS3Cr3t

Solution: BAPC10I - Keylogger

The solution to this problem is rather trivial. You simply have to simulate what the user was
typing as password. To do this, you have to store the typed string, and iterate over it character
by character, which results in a linear time algorithm. Below you find an algorithm which
solves the problem for one case.

Algorithm 2: Keylogger (String L)
Input: A keylogged password L.

Output: The original password.

Procedure Keylogger (String L)
R < Empty list of characters
for character c in L do
switch ¢ do
case -’ do
\ Delete character at current index and update index
end
case >’ do
‘ Increment index
end
case ‘<’ do
| Decrement index
end
case default do
‘ Copy c from L to R at current index
end
end
end
return String R

Java code for this problem can be found as appendix.

Barenholz, D 10

Technische Universiteit
TU /e i ,
University of Technology Final report

Problem: BAPC 12E - Encoded Message

Problem

Alex wants to send a love poem to his girlfriend Bridget. Unfortunately, she has a nosy friend,
Ellen, who might intercept his message and invade their privacy.

To prevent this, Alex has invented a scheme to make his missives indecipherable to Ellen. He
arranges the letters into a square, which is rotated a quarter-turn clockwise, and then he puts
the resulting letters on a single line again. (For simplicity’s sake, Alex doesn’t use whitespace
or punctuation in his poems.)

For example, the text RosesAreRedViolet sAreBlue would be encoded as
eedARBtVrolsiesuAoReerles using the following intermediate steps:

R|lo|s|e|ls ele|d|A|R
Alr|le | R|e B|lLt|V]r|lo
d|V|i|o]|l = l|s|1|e|s
e |t |s | A|Tr u|lA|lo| R |e
e|B|l|1l|ule el|lr|l|e]|s

Ellen has intercepted some of Alex’s messages but they make no sense to her. Can you write a
program to help her decode them?

Input
On the first line one positive number: the number of test cases, at most 100. After that per test
case:

e one line with an encoded message: a string consisting of upper-case and lower-case
letters only. The length of the message is a square between 1 and 10000 characters.

Output

Per test case:

e one line with the original message.

Sample in- and output

Input Output

3 TOPSECRET

RSTEEOTCP RosesAreRedVioletsAreBlue
eedARBtVrolsiesuAoReerles SquaresMayBeEven
EarSvyeqeBsuneMa

Barenholz, D 11

o 0 NN T R W N -

o
<>

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Solution: BAPC 12E - Encoded Message

It is quite clear how to solve this problem. I first present pseudo-code on how to decode a
message, and then proceed to explain where necessary.

Algorithm 3: Decode (String M)

Input: An encoded message M

Output: A decoded message of M

Procedure Decode (String M)
out <— empty string
length < length(M)
squareSize < sqaure root of length
for i = 0 to squareSize do
for j = 0 to squareSize do
‘ add character at index "squareSize - i - 1 + j * squaresize" to out
end
end
return String out

There are a couple things that I could explain. First, since we know that the length of the
message is a square, we know that the root of this length is the size of the table. Second and
last, line 7. I add the character at index squareSize - 1 - 1 + j * squareSizeto
the output. Initially, both 7 and j are 0, hence we add the character at index squareSize - 1.
When you take a look at the table in the problem description, you can see that this is the first
letter of the message. Next, the character at index squareSize - I - 1 is added. This is the second
letter of the message. By going through the double for loop, every single letter gets added in
the correct order, effectively decoding the encoded message and solving the problem.

Java code for this problem can be found as appendix.

Barenholz, D 12

Technische Universiteit
I U Eindhoven .
University of Technology Flllal report

Kattis Server

PrOblemS B RsS feed for new problems

@ SOLVED | @ TRIED [D UNTRIED SUBMISSIONS USERS

NAME - TOTAL ACC. RATIO FASTEST TOTAL ACC. RATIO DIFFICULTY

Aaah! 13734 6693 49% 0.00 5826 5421 93% 1.6 & [l
ABC 4446 2094 47% 0.00 2011 1818 90% [INE) & [l
A Different Problem 16119 6381 40% 0.00 5916 5130 87% 22 & [l
Alphabet Spam 3842 2501 65% 0.00 1830 1756 96% 1.4 & [l
Apaxiaaaaaaaaaaaans! 5927 3744 63% 0.00 3392 3251 96% U3 -4 [anl
Autori 5733 3795 66% 0.00 3590 3448 96% U3 & [l
Batter Up 2499 1621 65% 0.00 1561 1510 97% 1524 & [l
Battle Simulation 1624 654 40% 0.01 603 530 88% 23 & [l
Bela 2358 1710 73% 0.00 1543 1505 98% U3 & [l
Bijele 8208 5448 66% 0.00 4938 4816 98% 1524 & [l
Bus Numbers 4965 2180 44% 0.00 1766 1541 87% 2.7 & [l
Careful Ascent 629 361 57% 0.00 300 289 96% 1.8 & [l
D 15202 3681 24% 0.00 2168 1589 73% 4.1 & [l
Cetvrta 3136 2210 70% 0.00 2122 2047 96% U3 & [l
Cold-puter Science 10163 6973 69% 0.00 6050 5907 98% 1524 & [l
Cryptographer's Conundrum 5495 3443 63% 0.00 3048 2944 97% U3 -4 [anl
Daylight Saving Time 933 446 48% 0.00 391 350 90% 22 & [l
Detailed Differences 2996 1790 60% 0.00 1700 1636 96% 1.4 & [l
Dice Cup 3291 2329 71% 0.00 2157 2088 97% U3 & [l
Emag Eht Htiw Em Pleh 150 90 60% 0.00 88 83 94% 28] & [l
Faktor 3424 2602 76% 0.00 2455 2409 98% 1524 & [l
Filip 2937 1938 66% 0.00 1830 1774 97% U3 & [l
FizzBuzz 9073 5435 60% 0.00 4405 4236 96% U3 & [l
Grass Seed Inc. 3267 2209 68% 0.00 2054 2004 98% 13 -4 [aal
Hello World! 43980 25297 58% 0.00 19008 18026 95% 1.2 -4 [aal
Help Me With The Game 182 105 58% 0.00 102 96 94% 2 -4 [aal
Herman 1763 1000 57% 0.00 940 915 97% 1.4 -4 [aal
I've Been Everywhere, Man 6078 3955 65% 0.00 3748 3591 96% 13 -4 [aal
Kemija 3196 2090 65% 0.00 2013 1920 95% 1.4 -4 [aal
Ladder 5799 3552 61% 0.00 3307 3191 96% 13 -4 [aal
Mirror Images 2452 1349 55% 0.00 1261 1183 94% 1.7 -4 [aal
Modulo 5157 3341 65% 0.00 3225 3075 95% 1.4 -4 [aal
Nasty Hacks 3777 2304 61% 0.00 2229 2165 97% 13 -4 [aal
No Duplicates 2528 1466 58% 0.00 1392 1335 96% 13 -4 [aal
Oddities 12126 6857 57% 0.00 6212 6009 97% 13 -4 [aal
Pet 7142 4524 63% 0.00 4228 4050 96% 13 -4 [aal
Planina 2658 1818 68% 0.00 1710 1680 98% 12 -4 [aal
Pot 7878 4712 60% 0.00 4382 4242 97% 13 -4 [aal
Quadrant Selection 6197 3962 64% 0.00 3618 3530 98% 12 -4 [aal
Quick Estimates 4781 2671 56% 0.00 2532 2391 94% 125 -4 [aal
R2 10363 6677 64% 0.00 5554 5399 97% 12 -4 [aal
Reversed Binary Numbers 8263 5206 63% 0.00 4553 4373 96% 13 -4 [aal
Server 4479 1900 42% 0.00 1870 1738 93% 1.7 -4 [aal
Seven Wonders 4283 2473 58% 0.00 2379 2291 96% 13 -4 [aal
Sibice 3465 2242 65% 0.00 2129 2063 97% 13 -4 [aal
Simon Says 8043 4117 51% 0.00 3829 3571 93% 1.6 -4 [aal
Solving for Carrots 13790 8854 64% 0.00 7713 7431 96% 12 -4 [aal
Spavanac 8170 4698 58% 0.00 4410 4253 96% 13 -4 [aal
Speed Limit 8080 4495 56% 0.00 4091 3923 96% 13 -4 [aal
Stuck In A Time Loop 15766 8446 54% 0.00 7337 7065 96% 13 -4 [aal
Symmetric Order 321 20Mm 63% 0.00 1959 1865 95% 1.4 -4 [aal

Barenholz, D 13

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Take Two Stones 13016 8236 63% 0.00 6738 6488 96% 1.2 L [l
Tarifa 5864 3633 62% 0.00 3305 3198 97% 1.3 L [l
_annonba 1559 1092 70% 0.00 1040 1006 97% 1.4 L [l

m s This One 4008 2509 63% 0.00 2342 2243 96% 1.4 L [l

Trik 6134 3734 61% 0.00 3564 3443 97% 13 L [ad]
Z 3633 222 61% 0.00 2123 2047 96% 13 L [ad]

Figure 2.6: Solved questions on Kattis server

I will now go over a few fun and interesting problems.

Problem: CD (Waterloo Programming Contest 2010-09-26)

Problem

Jack and Jill have decided to sell some of their Compact Discs, while they still have some value.
They have decided to sell one of each of the CD titles that they both own. How many CDs can
Jack and Jill sell?

Neither Jack nor Jill owns more than one copy of each CD.

Input

The input consists of a sequence of test cases. The first line of each test case contains two non-
negative integers N and M, each at most one million, specifying the number of CDs owned by
Jack and by Jill, respectively. This line is followed by N lines listing the catalog numbers of
the CDs owned by Jack in increasing order, and M more lines listing the catalog numbers of
the CDs owned by Jill in increasing order. Each catalog number is a positive integer no greater
than one billion. The input is terminated by a line containing two zeros. This last line is not a
test case and should not be processed.

Output

For each test case, output a line containing one integer, the number of CDs that Jack and Jill
both own.

Example

Sample Input 1 Sample Output 1
33 2
1

S BN = W

Barenholz, D 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Technische Universiteit
TU /e G)
University of Technology Flnal report

Solution: CD (Waterloo Programming Contest 2010-09-26)

When reading the problem it becomes clear that the number of CDs that Jack and Jill both own
is a very simply calculation. The problem however, lays in the time constraint of this question,
which is 2 seconds. If in Java you use a Scanner in stead of a Buf feredWriter with my
proposed solution, you will run out of time. In fact, my solution is barely fast enough, coming
in at 1.93 seconds.

My proposed solution is to use sets. The number of CDs that can be sold is precisely the
number of CDs that Jill owns added with the number of CDs that Jack owns, subtracted by the
number of CDs that both own. So, by storing three sets one can very easily solve this.

Procedure CD ()

N < CDs owned by Jack
M < CDs owned by Jill
Jill < empty set

Jack < empty set

Both < empty set
fori=0to N do

Add CD to Jack

Add CD to Both

end

fori=0toMdo

Add CD to Jill

Add CD to Both

end

return Jack.Size + Jill.Size - Both.Size

Java code for this problem can be found as appendix.

Barenholz, D 15

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Problems: Help Me With The Game & Emag Eht Htiw Em Pleh (CTU
Open 2005)

Problem
Help Me With The Game: Your task is to read a picture of a chessboard position and print it in
the chess notation.

Emag Eht Htiw Em Pleh: This problem is a reverse case of the problem “Help Me With The
Game". You are given the output from that problem, and your task is to find the corresponding
input.

Input

Help Me With The Game: The input consists of an ASCII-art picture of a chessboard with chess
pieces on positions described by the input. The pieces of the white player are shown in upper-
case letters, while the black playerdAZs pieces are lower-case letters. The letters are one of “K"
(King), “Q" (Queen), “R" (Rook), “B" (Bishop), “N" (Knight), or “P" (Pawn). The chessboard
outline is made of plus (“+"), minus (“-"), and pipe (“I") characters. The black fields are filled
with colons (“:"), white fields with dots (“.").

Emag Eht Htiw Em Pleh: The input follows the output specification of the problem “Help Me
With The Game".

Output

Help Me With The Game: The output consists of two lines. The first line consists of the string
“White: ", followed by the description of positions of the pieces of the white player. The second
line consists of the string “Black: ", followed by the description of positions of the pieces of
the black player.

The description of the position of the pieces is a comma-separated list of terms (without any
spaces) describing the pieces of the appropriate player. The description of a piece consists of
a single upper-case letter that denotes the type of the piece (except for pawns, for that this
identifier is omitted). This letter is immediately followed by the position of the piece in the
standard chess notation 4AS a lower-case letter between “a" and “h" that determines the column
(“a" 1s the leftmost column in the input) and a single digit between 1 and 8 that determines the
row (8 is the first row in the input).

The pieces in the description must appear in the following order: Kings (“K"), Queens (“Q"),
Rooks (“R"), Bishops (“B"), Knights (“N"), and pawns.

Note that the numbers of pieces may differ from the initial position, and might not even corre-
spond to a situation that could arise in a valid chess game.

In case two pieces of the same type appear in the input, the piece with the smaller row number
must be described before the other one if the pieces are white, and the one with the larger row
number must be described first if the pieces are black. If two pieces of the same type appear in
the same row, the one with the smaller column letter must appear first.

Emag Eht Htiw Em Pleh: The output must be a valid input for the problem "Help Me With The
Game", corresponding to the given input data.

Barenholz, D 16

Technische Universiteit
e Eindhoven
University of Technology

Final report

Example
Sample Input 1

e et T B e
|.r.]:::|.b.]:g:l. k.|l on. x|
=t ———F———+
| :p:|.p.|l:p:|.p.l:p:l.P.l:::].p.|
e Rt e B e e s
[P S I o W IR R S I S <2
Fo— e ———
RS IO I 222 A S-S ISR B O I
to——t - ———F———+
P - R I I = - A B
e Rt e B e e
(IR = S 222 U S-S I IS I
-ttt ———F———+
| . P.|l:::| . PP | P PP
to——t——— - ———+———+
| :R: | .N.|:B:|.Q.]:K:|.B.]:::].R.|
Fo— b —————

Sample Input 2

to——t—— - ——F———+
[I R I I - I R
e Rt T B e e T 2
(IS A N2 2 U S-S IR (-SSR
+———t———F———F 4+ ———+
[I I I O I - O R
to— et ———+———+
(I S 222 I S-S IR (-SR-S
R et T e e
P 2 R I A O I - A
t———t———F———F -t ———+———+
(I R 222 R IS IR (N-SER-N E
e et e R o
I I - e - e
e Rt s e e
(I R 222 A I - IR (-SRI
to——t———t———F———F———F———F———+———+

Sample Output 1

White: Kel,Qdl,Ral,Rhl,
Bcl,Bfl1,Nbl,a2,c2,d2,f2,
g2,h2,a3,e4d

Black: Ke8,0d8,Ra8,RhS,
Bc8,Ng8,Nc6,a’,b7,
c7,d7,e7,£f7,h7,ho

Sample Output 2

White:
Black: Kh5, Kel

Commented solutions (in Java) have been provided as appendices. The comments that were

added should make everything clear.

Barenholz, D

17

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

3 Contests

3.1 Types of contests

There are a few broad types of contests. Most common are the algorithmical kind of contests,
where you have a problem that you’re trying to solve optimally with some time and memory
constraints. With these contest, generally, you gather your team in real life together in a hub.
When you then solve a problem, you’ll get a balloon. After the contest (which typically takes 5
hours), solutions to the problems are presented by the organisators. During a contest, generally,
there will be one laptop provided running a Linux distribution. Programming IDEs such as
Eclipse and IntelliJ are installed on these laptops, as well as documentation (usually). This
means that there can only be one person coding at the same time. Teams, which usually consist
of up to 3 people, are supposed to come up with a strategy on how to work around this fact.
A possible solution is pen-coding, where you write out actual code on paper, which is in my
opinion really valuable. It shows the deficiencies in the solution you have in mind, which you
need to solve somehow. By doing this on paper, in stead of behind the laptop, you save time.

A second type is an Artificial Intelligence contest. With these contests, participants are sup-
posed to write an Al for a specially designed game. The duration of these contests may vary
greatly, but usually these contests take around 1 month as they are tournament based. Generally,
these contests are online and you can participate from anywhere. It is up to the participating
team to stay organised and focused on creating a solution, within the provided framework of
the game (usually in a few languages including Java, C++ and Python).

Finally, there are engineering contests, where you’re presented with a difficult problem, and
you have to write some code that gives a good output. Mostly, these engineering challenges do
not have some optimal solution. Usually, the only thing that the organisator of the challenge is
interested in, is the output that your code creates. This means that you can use any programming
language you want, as long as you create the output in the correct format (. t xt file).

3.2 Algorithmical: EAPC

The EAPC - Eindhoven Algorithmical Programming Contest - took place 23th of September
2017. 1 participated together with Storm de Zeeuw and Nihal Goel, but unfortunately Nihal
ended up being sick. Our teamname was "™ + 1 = 0.

To prepare for the contest we did several things. First of all, there were lectures from Kevin
on general algorithmic problems and how to tackle them, as I explained earlier. These gen-
eral meetings also provided you with practice questions. We held a meeting to discuss what
should be in our cheatsheet, which we could use during the competition for pointers on how
to approach various problems. The cheatsheet contained not only relevant algorithmic infor-
mation but also the raw code for the algorithms themselves so that we could quickly replicate
an algorithm whenever the need arose. Dani€l took it upon himself to create this cheatsheet.
We also had individual meetings where we would get together and discuss the EAPC problems
from the previous years and work on them as a team to be able to replicate the work flow in the
competition itself.

The contest ended up being extremely hard in comparison with previous years, where we had

Barenholz, D 18

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

solved more than 5 problems. We now ended up solving only 2 problems. This was, however,
enough to land us in 6th place out of 22 or so teams with the 4™ place having solved 4 problems
and the best team having solved 6 problems. A major problem we encountered during this con-
test was efficiency and communication. Storm and Daniél had a hard time communicating, and
a basic structure of command wasn’t really present. We both did the best we could individually
but there was next to no teamwork except for the double checking of each others code. We had
discussed some teamwork tactics beforehand but due to Nihal being sick all plans were rather
useless and we were thrown off guard. We decided that next time we should have a backup
plan and prepare for harder problems by meeting more and discussing the problems from this
EAPC in particular and their solutions.

I will now walk you through solving a problem that we had solved during the EAPC, Disastrous
Doubling.

Problem: EAPC17D - Disastrous Doubling

Problem

A scientist, E. Collie, is going to do some experiments with bacteria. Right now, she has one
bacterium. She already knows that this species of bacteria doubles itself every hour. Hence,
after one hour there will be 2 bacteria. E. Collie will do one experiment every hour, for n
consecutive hours. She starts the first experiment exactly one hour after the first bacterium
starts growing. In experiment ¢ she will need b; bacteria. How many bacteria will be left
directly after starting the last experiment? If at any point there are not enough bacteria to do the
experiment, print error. Since the answer may be very large, please print it modulo 10° + 7.
Input

The input consist of two lines.

e The first line contains an integerl < n < 10°, the number of experiments.

e The second line contains n integers by, -, b, where 0 < b; < 20 is the number of bacteria
used in the ithe experiment.

Output
Output a single line containing the number of bacteria that remains after doing all the experi-
ments, or error.

Sample Input 1 Sample Output 1
3 8

000

Sample Input 2 Sample Output 2
5 1

11111

Barenholz, D 19

o 0 N N T AR W N =

-
L

Technische Universiteit
e Eindhoven
University of Technology

Final report

Sample Input 3 Sample Output 3
5 0

0224020

Sample Input 4 Sample Output 4
5 error

02241

Solution: EAPC17D - Disastrous Doubling

One thing to notice is that the numbers become very, very large. In fact, they become so large
that they won’t fit in a long (Java). The proposed solution was that one needed to calculate in
modulo, however, Java has a Biglnteger class which can hold numbers this big.

Procedure getBacteriaAmount ()
Let n <— number of experiments
Let amO f Bact + 1
fori=0tondo
Subtract the next integer from amOfBact
if amOfBact < 0 then

| return "error”
end
Multiply amOfBact by 2.
end
return amOfBact modulo 10% + 7

Java code has been added as appendix.

3.3 AIl: Battlecode

The Battlecode competition was a seed-based tournament, taking place from the 8™ of January
2018 to the 24" of January 2018. I participated together with Koen Degelingen, Rowin Versteeg
and Storm de Zeeuw. Our teamname was Dako RowStorm.

We participated in Battlecode which is a contest revolving around creating a working Al for a
specific game made by them with a specific ruleset and then battling your Al with other group
their Als. The game itself was a turn based strategy game in which the goal was the build a
spaceship to Mars since Earth was going to be destroyed. Each game consisted of two teams, a
red team and a blue team who had to compete against each other. In the game you could collect
resources to build units, factories or to research certain abilities. The units were either workers
(who gather resources), or fighting units (who attack the enemy). Factories could produce units.

Barenholz, D 20

T U TEe"c‘Z:‘los::: Universiteit
e University of Technology Final report

\WW Worker - Harvest, Build and

Repair

Knight - Melee, Attack and ‘ Healer - Repair, Empower and

Mage - Destroy masses, blink
away and create Havoc

Destroy Give moral support

% Ranger - Ranged, Attack and ‘ ! Factory - Produce units, be

Shipe constructed and be repaired
Lol 13

Factory.

Figure 3.1: The produce-able units from the Battlecode game.

To develop a rocket to go to Mars you first had to research the ability to build the rocket and
then actually build the rocket. Below is an 3D representation of the game. Both teams are
fighting on Earth, you can see this because of the green ground. The red team has focused on
attacking and has conquered one half of Earth and is trying to overtake blue. The blue team on
the other hand has focused on defending by creating a lot of factories, but will probably lose
due to its lack of fighting units.

Figure 3.2: A visualisation of the Battlecode game.

The contest lasted about 2 weeks, in which you could create and improve your Al. The goal is
to train against other teams in preparation for the big competition at the end. Al and games, of

Barenholz, D 21

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

course sounded interesting to the group members. It is also organised by MIT which is a highly
respected institution in the STEM science fields so the lectures and information provided by
them can be seen as being of high quality so we were excited to start. We ended up having 2
meetings, in the first we just wanted to go through the general rules, we watched some video
lectures provided by MIT and get everyone on the same level of understanding. In the sec-
ond meeting we installed everything and got to work on a general strategy, which was a rush
strategy: to get to Mars as quickly as possible without focusing on the enemy.

The contest itself went very wrong, the competition was planned during the exam weeks of
our university, so no one really had time to meet or work on the Al In the end we ended up
coding a general framework and got the basics of our first strategy in code to a certain degree.
We learned that motivation and getting motivated by team members is really important in long
lasting projects / contests. Without contact no one will feel the need to do anything. Also,
meeting in person is way better than meeting online.

For next time we should have either more meetings or we should not participate if we know we
will not have the time and energy to perform well. If we are not motivated for the contest then
participating is of no use.

3.4 Engineering: Google Hashcode

Google Hashcode took place on the 1st of March 2018. I planned to participate together with
Rowin Versteeg, Bogdan Enache and Storm de Zeeuw, but unfortunately I ended up being sick
and missing the contest. The teamname was The Weeaboys. 1 am really unhappy with the fact
that I missed this contest, as it was the one I was looking forward to the most.

This year we participated in the qualification round of the Google Hash Code in which we
had to solve an engineering problem as optimally as possible. It is a competition hosted by
Google for students and industry professional across Europe, the Middle East and Africa. The
problem presented would be an NP-hard problem, which could not be easily solved by one
simple algorithm. Multiple algorithms; greedy, random, brute-force and more were needed
for an estimation of the most optimal solution. We chose to do this competition as it was
something we have never tried before, and it was one of the recommended contests by our
track coordinator, Kevin Verbeek.

To prepare we met a week before to try out the judge system which had been put online by
the Hashcode team. We had to solve a (much smaller) optimisation problem, which was about
optimising the amount of pizza slices given a large pizza with specific ingredients.

It was of a great help since we did not have any experience with this kind of problems and
contests before. The Hashcode worked differently than most competitions, instead of uploading
code, you had to upload input and output files as a solution. We also read the document that
Kevin Verbeek (our track coordinator) sent us, which contained a description of a solution for
the Hashcode of last year, it also gave us a great insight of what to expect.

The competition was hosted by Gehack at the Tu/e for the hub of Eindhoven on the 1st of
March. Unfortunately, Daniel was sick and was unable to participate. The problem presented
was a taxi scheduling problem, coincidentally we had to solve a similar problem in the course
DBL Algorithms a few weeks before that. The main idea of this problem was that given a
list of n taxis and m taxi requests, decide on which taxi picks up which request (if any). This
decision should take into account the distance between the current position of the taxi and the

Barenholz, D 22

T U TEEI:Z;‘\:::: Universiteit
e University of Technology Final report

s S - e e - -

[’

Figure 3.3: A possible slicing of a pizza for HashCode

location of the taxi request, the availability of the taxi and the request, the income generated
by that request if it is fulfilled and what other requests can be fulfilled by the taxi in the same
amount of time. During the contest, Rowin was implementing the basic features and brute force
methods of the code, so that the code was working as fast as possible. Storm was inventing new
easy to implement tricks to optimise the scheduling. Bogdan was trying to implement his own
greedy algorithm, but more complex using our basic framework. As a result, our team was one
of the first with working basic code (brute force) which gradually improved over time as the
greedy strategy was being used. The greedy strategy had a simple but efficient idea: once a
taxi is available, assign the most profitable request to it, where profitable is represented by the
greatest amount of money that the respective taxi can make by taking into consideration the
money gained by serving the request (determined by how long that taxi trip is) as well as the
costs for moving from its current position to the location of the request (i.e. avoid going all
across the town for a 2 minute taxi trip). In the end we ended up in 7th place of the hub and
rank 1280 of the world, which is pretty good for participating for the first time in this contest.

We learnt that it is better to work on different strategies and merge them together, as working
on one specific strategy may limit your view and leave you stuck with a sub-optimal solution.
Teamwork is very important for this, you need to communicate the changes you made and try
to combine these, for this you should use the same framework which was implemented at the
start so that combining later takes no time and effort.

Barenholz, D 23

o 0 NN T R W N -

[< =~
W N = O

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

4 Seminar

As hinted at in the section about the organisation of the track, students are required to give
a seminar on a specific topic. In this context, giving a seminar means giving a mini-lecture,
explaining your topic. My topic was Subset DP. In order to explain what subset DP is, one first
needs to fully understand DP - Dynamic Programming.

Dynamic Programming is a way to solve certain types of optimisation problems. The class-
room example of a DP problem is the 0/1 Knapsack. In this problem, you have a knapsack
which can hold at most a total of weight V. There are some items, which have a value p;
and a weight w;. The goal of solving a 0/1 Knapsack is to figure out how much value you can
take with you. An initial solution would be to try every single combination of items until you
find the best one possible, but that takes a lot of time. By using DP, you can still try every
single combination, but you do so in a clever way. Before I explain how to solve the Knap-
sack problem, one should note that in order to use DP on a problem, the problem needs the
property that it can be split into subproblems (within the knapsack case you can define these
subproblems in terms of items and weight used). In order to split into subproblems, it needs
the optimal substructure property. Now, onto knapsack. The way we solve the problem with
dynamic programming is as follows. You define a subproblem in terms of the input (/" and the
items). You keep track a table consisting of all subproblems. You figure out the base cases (if
there are no items or the maximum allowed weight is 0, then you cannot take anything) and fill
these in your table. Then, you find a recurrence and with the recurrence fill in the rest of the
table (you either take item 7, and add its value and weight, or you don’t). In pseudocode, this
all becomes:

Algorithm 4: DP ()

Input: Maximum weight W and n items with weights and values.

Output: The maximum value you can take with you in the knapsack.

Procedure DP ()
n < total amount of items
T < atable of dimensions n +1 x W + 1
for All items i to n do
for All weights w to W do
ifi==01lw==0 then
| T[i)[w] < 0
else if weight of item 7 — 1 < w then
\ Ti][w] <= max (T[i — 1][w — w;] + p;, T]i — 1][w])
else
| Tli)[w] « T[i — 1][w])
end
end
end

Subset DP is in essence the same thing, but one uses all subsets of some set when defining
subproblems.

To prepare for the seminar, I did research on what kind of subset DP problems there were. Then
I read up on the specifics for those problems, so that I understood them completely. Afterwards,

Barenholz, D 24

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

I spent a lot of time on slides, in the hope that they would be clear and usable as standalone.
I practised by seminar a few times by myself, and once with a friend, who pointed out some
obvious though not yet noticed by me mistakes and missing information, which I added in later.

I believe that the talk itself went pretty well. I was able to answer all questions that I got after
the seminar. The only comment I got was that I didn’t really give an overview of the topic, but
that was a conscious choice made by me.

By giving this seminar, I learned that I can actually give presentations, as long as I put a lot of
time into the presentation by myself. I need to know all the slides pretty much by hard, and
understand what I have to talk about. But, once I know the slides and know the topic very well,
I believe I can explain it adequately.

Of course, I also learned how to solve problems with subset DP.

For the next time, I should practise even more. I ran out of time during my talk, which I literally
said. This is not done. I should have just continued talking at a normal pace, just skip certain
slides without mentioning, and get to the point.

Barenholz, D 25

TU/e

Technische Universiteit
indhoven

Ei
University of Technology Flnal report

List of Figures

1.1

2.1
22
2.3
24
2.5
2.6

3.1
3.2
33

Search queriesin Google. L 2
The problems page of the K2 server 6
The problems page of the Kattisserver 6
The home page of www.geeksforgeeks.org. 7
Most frequent questions on Stack Overflow. 8
Solved questionson K2 server L. 9
Solved questions on Kattisserver 14
The produce-able units from the Battlecode game. 21
A visualisation of the Battlecode game. 21
A possible slicing of a pizza for HashCode 23

Barenholz, D 26

www.geeksforgeeks.org

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

A Written Code

A.1 Code for BAPC10D - Collatz

Java:

import java.io.BufferedReader;
import java.io.BufferedWriter;

; import java.io.lIOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

public class bapclOd {

public static void main(String[] args) throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.
in));
BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System
.out));

int cases = Integer.parselnt(r.readLine());

while (cases ——>0) {
double N = Double.parseDouble(r.readLine ());
int k = (int) (2 * Math.ceil(N / 2) — Math.ceil (Math. floor((N
—-D/3) / 2));
w. write (k + "\n");
}
w. flush () ;

» }

Python:

import math as m

3 cases = int(input())

while cases > 0:
N = int(input())
print(2 * m.ceil(N / 2) — m.ceil(m.floor (N — 1) / 3) / 2))
cases —= 1

A.2 Code for BAPC10I - Keylogger

Java:

import java.io.BufferedReader;
import java.io.BufferedWriter;

s import java.io.lOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.LinkedList;

IEE

Barenholz, D 27

Technische Universiteit
T U @ Ehnioven)
University of Technology F]nal report

55
56
57

58

59
60

61 }

10 * @author s165839

11 x/

2 public class keylogger ({
1

void run () throws NumberFormatException, IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in))

BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System . out
)) s
int cases = Integer.parselnt(r.readLine());
while (cases— > 0) {
char[] in = r.readLine().toCharArray();
LinkedList<Character> out = new LinkedList<Character >();
StringBuilder sb = new StringBuilder("");
// keep a counter for the index of the password
int index = 0;
for (int i = 0; i < in.length; i++) {
// for every character, make a decision
switch (in[i]) {
case '—’:
if (index > 0) {
out.remove(——index) ;
}
break ;
case >
if (index < out.size()) {
index ++;
}
break ;
case ’'<
if (index > 0) {
index ——;
}
break ;
default: {
out.add(index, in[i]);
index ++;
}
1
1

/' for every character in the output
for (Character ¢ : out) {
// add to string
sb.append(c);
}
sb.append("\n");
w. write (sb.toString ());
w. flush () ;
}
}

% .

’ .

public static void main(String[] args) throws NumberFormatException,
IOException {

new keylogger () .run();
}

Barenholz, D 28

Technische Universiteit
TU /e i ,
University of Technology Final report

A.3 Code for BAPC12E - Encoded Message

Java:

import java.io.BufferedReader;

> import java.io.BufferedWriter;

3 import java.io.IlIOException;

4 import java.io.InputStreamReader;
s import java.io.OutputStreamWriter;

7 [x %

8 *

9 % @author s165839

0 *k/

i1 public class beapcl2e {

12

13 void run() throws NumberFormatException, [OException {

14 BufferedReader r = new BufferedReader (new InputStreamReader (System.in))

15 BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System.
out));

16

17 int cases = Integer.parselnt(r.readLine());

18 /l for every case

19 while (cases ——>0) {

20 // process the word

21 char[] in = r.readLine().toCharArray();

2 String out = "";

23 int length = in.length;

24 /!l square root of length times 2 is the encoding square

25 int squareSize = (int) Math.sqrt((double) length);

26 // process horizontally and vertically

27 for (int i = 0 ; 1 < squareSize ; i++) {

28 for (int j =0 ; j < squareSize ; j++){

29 out += in[squareSize — i — 1 + j * squareSize];

30 }

31 }

32 /' write the word

33 w. write (out + "\n");

34 }

35 w. flush () ;

6

38

39

40

41 public static void main(String[] args) throws NumberFormatException,
IOException {

o) new beapcl2e().run();

43

44 }

15}

Barenholz, D 29

Technische Universiteit
e Eindhoven
University of Technology

Final report

A.4 Code for CD

Java:

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.lIOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.HashSet;

7 import java.util.Set;

10

11

12

13

W

50

import java.util.StringTokenizer;

public class CD {
// use buffered reader and writer

BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System.out))

bl

void run () throws IOException {
while (true) {
/' StringTokenizer gives all

// Number CD from person 1

tokens one by one
StringTokenizer s = new StringTokenizer(r.readLine());

int n = Integer.parselnt(s.nextToken());

// Number CD from person 2

int m = Integer.parselnt(s.nextToken());
// check if we’re at the end of the test cases

if (n ==0&& m == 0) {
break ;
}

// create three sets to keep track of the numbers
Set<Integer > setOne = new HashSet<>();
Set<Integer> bothSets = new HashSet<>();
Set<Integer > setTwo = new HashSet<>();

// add for the first set
for (int 1 = 0; i < n; i++) {

int cd = Integer.parselnt(r.readLine());

setOne .add(cd);
bothSets .add(cd) ;

}
// add for the second set
for (int 1 = 0; i <m; i++) {

int cd = Integer.parselnt(r.readLine());

setTwo.add(cd) ;
bothSets .add(cd) ;

}

// write the answer

w. write (setOne.size () + setTwo.size() — bothSets.size() + "\n");
}
/!l needed for bufferedwriter
w. flush () ;
}
public static void main(String[] a) throws IOException {

(new CD()).run();
}

Barenholz, D

30

Technische Universiteit
TU /e G)
University of Technology F]nal report

54}

A.5 Code for Help Me With The Game

Java:

W

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.lOException;

4+ import java.io.InputStreamReader;
s import java.io.OQutputStreamWriter;
¢ import java.util.ArrayList;

7 import java.util.Arrays;

o public class helpme {

0
1
5

4

5

1
1
1
1
1
15
16
17
18
19
20

21

/l We create a list of the pieces we have

public ArrayList<Piece> pieces = new ArrayList<Piece >();
/%

* Removes the last character of a string.

*/

private static String removeLastChar(final String str) {
return str.substring (0, str.length() — 1);

}

/%
* Reads the input, and saves any pieces you encounter in the list of
pieces
*/
private void readInput() throws IOException {
// initialize a buffered reader to read the input
BufferedReader r = new BufferedReader (new InputStreamReader (System.in))

/l skip first line
r.readLine () ;
// for every line on the board
for (int i = 8; 1 >= 1; i—) {
// read a line
char[] 1 = r.readLine () .toCharArray () ;
// for every character
for (int ¢ = 0; ¢ < l.length; c++) {
/l if it is a letter
if (Character.isLetter(1[c])) {
Piece p = new Piece(l[c], i, c);
// add said piece to all pieces
pieces .add(p);
}

}
/l skip a line

r.readLine () ;
}
}

/*
x* Writes the output.
*/

Barenholz, D 31

57
58
59
60
61

62

64
65
66
67
68
69
70
71

74
75
76

77

79
80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99

100
101
102

103

Technische Universiteit
e Eindhoven
University of Technology

Final report

private void writeOutput ()

throws IOException {

// initialize a buffered writer to write the output
BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System. out

)

/]l create two strings for each colour
String white = "White: ";
String black = "Black: ";

/l create a list of all pieces, in
ArrayList<Piece> sortedPieces = Piece.sort(pieces);

// for every single piece

for (Piece piece

sortedPieces) {

if (piece.isWhite()) {
white += (piece.toString () + ".,");

} else {

sorted order

black += (piece.toString () + ".,");

}
}

// remove the last

character from the string; this is a s

white = removeLastChar(white) ;
black = removeLastChar(black);

// write both strings

w. write (white + "\n");
w. write (black + "\n");

// flush your buffered writer

w. flush () ;
}
/ *
* Runs the program
*/

void run () throws IOException {

readInput () ;
writeOutput () ;

}

/ *
x+ Main method
*/

public static void main(String[] a)
(new helpme ()).run();

}
}

/%

with a newline

throws IOException {

x* This is a class for a piece on the board. This piece has a name (e.g. R

for

* rook), a rownumber ,
no

* pawn.

x/

class Piece {

a columnnumber ,

a colour and it is either a pawn or

Barenholz, D

32

Technische Universiteit
TU/e i _
University of Technology Final report

104 char name;

105 int row;

106 int col;

107 boolean colour;

108 boolean pawn;

109

110 /[*

i x Constructor of a piece. With this one can create new pieces.
112 */

13 Piece (char name, int row, int col) {
114 this .name = name;

s this .row = row;

116 this.col = col;

17 colour = Character.isLowerCase(name) ? false : true;

18 pawn = ((name == ’'p’) Il (name == 'P’)) ? true : false;

19 }

120

121 /%

122 x* Returns a list sorted on index of the pieces for white pieces

123 */

124 private static ArrayList<Piece> whitelndexSort(final ArrayList<Piece>
list) {

125 // create a list to return on Index

126 ArrayList<Piece> onIndex = new ArrayList<Piece >();

127

128 /l create an array with rowlndices

129 int[] rowlndices = new int[list.size()];

130 int i = 0;

131 for (Piece p : list) {

132 rowlIndices[i] = p.row();

133 1++;

134 }

135 // Sort on the indexes from LOW to HIGH

136 Arrays.sort(rowlndices);

137 // for every row index ,add the corresponding piece to the list on index

138 for (int ind : rowlndices) {

139 for (Piece p : list) {

140 if (ind == p.row()) {

141 if (!onlndex.contains(p)) {

142 onlndex .add(p);

143 }

144 }

145 }

146 }

147 // then return said list

148 return onlndex;

149 }

150

151 /%

152 x* Returns a list sorted on index of the pieces for black pieces

153 */

154 private static ArrayList<Piece> blackIndexSort(final ArrayList<Piece>
list) {

155 // create a list to return on Index

156 ArrayList<Piece> onIndex = new ArrayList<Piece >();

157

158 /] create an array with rowlndices

Barenholz, D 33

Technische Universiteit
T U @ Ehnioven)
University of Technology F]nal report

159 int[] rowlIndices = new int[list.size()];

160 int i = 0;

161 for (Piece p : list) {

162 rowlndices[i] = p.row () ;

163 1++;

164 }

165 // System.err.print("Elements: " + p.toString () + "\n");
166

167 /! Sort on the indexes from HIGH to LOW

168 Arrays.sort(rowlndices);

169 /1l for every row index ,add the corresponding piece to the list on index
170 for (int ind = rowlndices.length — 1; ind >= 0; ind——) {
171 for (Piece p : list) {

172 if (rowlndices[ind] == p.row()) {

173 if (!onlndex.contains(p)) {

174 onlndex .add(p);

175 }

176 }

177 }

178 }

179 // then return said list

180 return onlndex;

181 }

182

183 / %

184 * Sorts pieces as wanted by the question

185 */

186 public static ArrayList<Piece> sort(ArrayList<Piece> pieces) {
187 /l A semi—sorted list to return

188 ArrayList<Piece> sorted = new ArrayList<Piece >();

189

190 /' Create sublists

191 ArrayList<Piece> whiteKings = new ArrayList<Piece >();
192 ArrayList <Piece> whiteQueens = new ArrayList<Piece >();
193 ArrayList<Piece> whiteRooks = new ArrayList<Piece >();
194 ArrayList<Piece> whiteBishops = new ArrayList<Piece >();
195 ArrayList<Piece> whiteKnights = new ArrayList<Piece >();
19 ArrayList<Piece> whitePawns = new ArrayList<Piece >();
197 ArrayList<Piece> blackKings = new ArrayList<Piece >();
198 ArrayList<Piece> blackQueens = new ArrayList<Piece >();
199 ArrayList<Piece> blackRooks = new ArrayList<Piece >();
200 ArrayList<Piece> blackBishops = new ArrayList<Piece >();
201 ArrayList<Piece> blackKnights = new ArrayList<Piece >();
202 ArrayList<Piece> blackPawns = new ArrayList<Piece >();
203

204 /! First add the piece to their lists (also add Kings to the sorted
205 /l list , they are first)

206 for (Piece piece : pieces) {

207 switch (piece.name) {

208 case 'K’:

209 whiteKings .add (piece) ;

210 case 'Q’:

211 whiteQueens . add (piece) ;

212 case 'R’:

213 whiteRooks . add (piece);

214 case 'B’:

215 whiteBishops .add(piece);

Barenholz, D 34

219

220

221

241

246

Technische Universiteit
e Eindhoven
University of Technology

Final report

case 'N’:
whiteKnights .add (piece);
case 'P’:
whitePawns .add (piece);
case ’'k’:
blackKings .add (piece);
case ’'q’
blackQueens .add(piece);
case ’'r’:
blackRooks .add (piece);
case ’'b’:
blackBishops.add(piece);
case ’'n’:
blackKnights .add (piece);
case 'p’:
blackPawns .add (piece);
}

}

/!l Sort all sublists
whiteKings = whitelndexSort(whiteKings);
for (Piece whiteKing : whiteKings) {
if (!sorted.contains(whiteKing)) ({
sorted .add (whiteKing) ;
}
}

whiteQueens = whitelndexSort(whiteQueens) ;
for (Piece whiteQueen : whiteQueens) {
if (!sorted.contains (whiteQueen)) {
sorted .add (whiteQueen) ;
}
}

whiteRooks = whiteIndexSort (whiteRooks) ;
for (Piece whiteRook : whiteRooks) {
if (!sorted.contains (whiteRook)) {
sorted .add (whiteRook) ;
1
}

whiteBishops = whitelndexSort(whiteBishops);

for (Piece whiteBishop : whiteBishops) {
if (!sorted.contains(whiteBishop)) {
sorted .add(whiteBishop);
}
}

whiteKnights = whitelndexSort(whiteKnights);

for (Piece whiteKnight : whiteKnights) {
if (!sorted.contains(whiteKnight)) {
sorted .add (whiteKnight) ;

}
}
whitePawns = whiteIndexSort (whitePawns) ;
for (Piece whitePawn : whitePawns) {

if (!sorted.contains (whitePawn)) {

Barenholz, D

35

Technische Universiteit
TU /e G)
University of Technology F]nal report

274 sorted .add (whitePawn) ;

275 }

276 }

77

278 blackKings = blackIndexSort(blackKings);
279 for (Piece blackKing : blackKings) {

280 if (!sorted.contains(blackKing)) {

281 sorted .add(blackKing);

282 }

283 }

284

285 blackQueens = blackIndexSort(blackQueens) ;
286 for (Piece blackQueen : blackQueens) {
287 if (!sorted.contains (blackQueen)) {
288 sorted .add (blackQueen) ;

289 }

290 }

291

292 blackRooks = blackIndexSort(blackRooks);
293 for (Piece blackRook : blackRooks) {

294 if (!sorted.contains (blackRook)) {

295 sorted .add (blackRook) ;

296 }

297 }

298

299 blackBishops = blackIndexSort(blackBishops);

300 for (Piece blackBishop : blackBishops) ({
301 if (!sorted.contains(blackBishop)) {

302 sorted .add(blackBishop);

303 }

304 }

305

306 blackKnights = blackIndexSort(blackKnights);
307 for (Piece blackKnight : blackKnights) {
308 if (!sorted.contains(blackKnight)) {
309 sorted .add(blackKnight);

310 }

311 }

312

313 blackPawns = blackIndexSort(blackPawns) ;
314 for (Piece blackPawn : blackPawns) {

315 if (!sorted.contains (blackPawn)) {

316 sorted .add (blackPawn) ;

317 }

318 }

19

320 return sorted;

301 }

323 /%

324 * Returns the size of a Piece Array List
325 x/

326 @SuppressWarnings ("unused")

327 private int size(final ArrayList<Piece> list) {
328 return list.size () ;

329 }

330

331 / *

Barenholz, D 36

359
360
361
362
363
364
365
366
367
368
369
370
371
372

373

379

380

382
383

384

Technische Universiteit
e Eindhoven
University of Technology

Final report

* Returns true

*/

if a piece is a pawn

public boolean isPawn () {
return pawn;

/ *

* Returns
*/

public boolean isWhite () {
return colour;

true if a piece is a white piece

/ *
* Return
*/
private char name() {

the name of the piece

return Character.toUpperCase (name) ;

}

/ *

* Return the row index of the piece
*/

private int row() {
return row;

}

/%

* Return the col name of the piece
*/

private char col() {
switch (col) {

case 2:

return ’a’;
case 6:

return 'b’;
case 10:

return ’c’;
case 14:

return ’d’;
case 18:

return ‘e’ ;
case 22:

return ’f’;
case 26:

return 'g’;
case 30:

return 'h’;
default :

System . err. println ("Something went wrong
information ...");
!

// something went wrong
return

with finding column

Barenholz, D

37

389
390
391

392

396
397
398
399
400
401
402
403
404

TU/e

Technische Universiteit
Eindhoven

University of Technology Final report

/%

* Overrides the toString method. We want to print out only our relevant
* information .

*/

@Override

public String toString () {
String ret = "";
if (lisPawn()) {

ret += name() ;

}
ret += col();
ret += row() ;
return ret;

}

}

A.6

Java:

import

> import

A~ oW

import
import
import
import

public

Code for Emag Eht Htiw Em Pleh

java.io.BufferedReader;
java.io.BufferedWriter;
java.io.IOException;
java.io.InputStreamReader;
java.io.OutputStreamWriter;
java.util . ArrayList;

class emplah {

// We create a list of the pieces we have
public ArrayList<ReversedPiece> reversedPieces = new ArrayList<
ReversedPiece >() ;

/ %

* Reads the input, and saves any pieces you encounter in the list of
pieces

*/

private void readInput() throws I[IOException ({
BufferedReader r = new BufferedReader(new InputStreamReader(System.in))

)

String [] temp = { "" };

r.

skip (7);

String w = r.readLine () ;
String [] white = (w.length()) > 1 ? w.split(",") : temp;

T.

skip (7);

String b = r.readLine () ;
String [] black = (b.length()) > 1 ? b.split(",") : temp;

for (String whitePiece : white) {

boolean colour = true;
boolean pawn;
ReversedPiece p;// = new ReversedPiece(’ °, —1, —1, false, false);
switch (whitePiece.length()) {
case 3:
pawn = false;

Barenholz, D 38

Technische Universiteit
T U @ Ehnioven)
University of Technology F]nal report

32 p = new ReversedPiece(whitePiece.charAt(0), convertCol(whitePiece.
charAt(1)),

33 convertRow (whitePiece .charAt(2)), colour, pawn);

34 reversedPieces .add(p);

35 break ;

36 case 2:

37 pawn = true;

38 p = new ReversedPiece(’P’, convertCol(whitePiece.charAt(0)),
convertRow (whitePiece .charAt(1)), colour,

39 pawn) ;

10 reversedPieces .add(p);

41 break ;

) default :

43 break ;

44 }

45 }

46

47 for (String blackPiece : black) {

48 boolean colour = false;

49 boolean pawn;

50 ReversedPiece p;// = new ReversedPiece(’ ’, —1, —1, false, false);

51 switch (blackPiece.length ()) {

52 case 3:

53 pawn = false;

54 p = new ReversedPiece(blackPiece.charAt(0), convertCol(blackPiece.
charAt(1)),

55 convertRow (blackPiece .charAt(2)), colour, pawn);

56 reversedPieces .add(p);

57 break;

58 case 2:

59 pawn = true;

60 p = new ReversedPiece(’P’, convertCol(blackPiece.charAt(0)),
convertRow (blackPiece .charAt(1)), colour,

61 pawn) ;

62 reversedPieces .add(p);

63 break ;

64 default :

65 break ;

66 }

67 }

68 }

69

70 /%

71 * Writes the output.

7 */

73 private void writeOutput() throws IOException {

74 // initialize a buffered writer to write the output

75 BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System . out
)) s

76

7 // code to build the board

78 char [][] board = {

79 /10

80 { ’+°, =2, =2, =, 4>, =", =", =" 4 = =
= =) = = =

81 B T O T S T T

},
82 /11

Barenholz, D 39

o
<

87

90

91

92

94

96

97

98

99

100
101

102

103

104

105

106

107

108

109
110

111

114

116

Technische Universiteit
e Eindhoven
University of Technology

Final report

)

il

)

b
2
)
|’
b
b
b
)
+’
b
b
b
9 o
|’
b
b
b
b
+’
9
b
b
b
K
9
9
b
b
+’
9
9
b
’ .
T
)
b
b
b
+’
)
b
b
b
I’
b
b
9
b
+’
b
b
9
% .
|7
b
9
9

s s s K
O D) 5
PR L 9

5 CE))

) s s 5, 2
-, — 5, *T,
) s s 5, 0

))) +

5. 5> . o °
L) . > 9
s s s s o

5 CE) D)

5 s L) 5,
- 9) +,
) s s 5, 0

))) +

s s o °
L) D) H
5 L s 5 L N

5 CE))

5 s L) 5,
o)) +,
99 L) O, 9

) >)

5 .o s .0 o °
L) . > 5
s s o °

) L) DR

s s) 5,
)) +,
s s o9

9 9 9

5 s s o] o
L) L) 5
5 . PR} o0 °

) L) D)

5 s) 5,
)) +°,
s s o9

) >)

5 Lo PN N
CE) . > 5
s s o0 °

) L))

5 s) 5,
)) +,

Barenholz, D

40

118

119

120

123

126

129

130

131

136

138
139
140
141
142
143
144
145
146
147
148

149

158
159
160
161
162
163

164

Technische Universiteit
e Eindhoven
University of Technology

Final report

B T S e
o
// 13
L e S P I
O P R
o
// 14
{ "+, =7, =", =", 47, =" = =y -7, T+,
= =) = = =
B T T —, T+
o
/1 15
L e S L0,
R e R
',
/1 16
{ T, =, =, =y =y -7, T+,
T S
I T e A R =, T+
},
IE
// Add the pieces to the board at their place
for (ReversedPiece p reversedPieces) {
board[p.getCol () J[p.getRow ()] = p.isWhite () ? p.getName () Character
.toLowerCase (p.getName ()) ;
}
// Code to print the board that was made
String [] boardPrint = new String[board[0].length];
for (int i = 0; i < board.length; i++) {
// boardPrint[i] = board[i].toString();
boardPrint[i] = makeString(board[i]) ;
}
for (String line : boardPrint) {
if (line != null) {
w. write (line + "\n");
}
}
/]l flush your buffered writer
w. flush () ;
}
// Converts character to column index
private int convertCol(char x) {
switch (x) {
case ’‘a’:
return 2;
case 'b’:
return 6;
case ’'c’:
return 10;
case ’'d’:
return 14;
Barenholz, D 41

165
166
167
168
169
170
171

173

174

176
177
178
179
180
181

186
187
188
189
190
191
192
193

194

196
197
198
199
200
201
202
203
204
205
206
207
208
209

210

Technische Universiteit
e Eindhoven
University of Technology

Final report

> 5 .

case e
return
case 'f’:
return
case ’'g’:
return
case 'h’:
return

}

18;
22;
26;

30;

return —1;

// Converts

character
private int convertRow (char x) {

switch (x) {

case ’'1°:
return 15;
case ’'2°:
return 13;
case ’'3’:
return 11;
case ’'4’:
return 9;
case '5:
return 7;
case '6:
return 5;
case '7’:
return 3;
case ’'8’:
return 1;
}
return —1;
}
private String
String ret =
for (char c
ret += c;
}
return ret;
}
/%
* Runs the program
*/
void run ()
readlnput () ;
writeOutput () ;
}
/ *

%+ Main method

*x/

public static void main(String[] a)
(new emplah()).run();

throws IOException {

makeString (char []

throws IOException {

Barenholz, D

42

223

]

224
225
226
227
228

229

244
245
246

247

249
250
251

252

253

256
257
258
259
260
261
262
263
264
265
266
267

268

Technische Universiteit
e Eindhoven
University of Technology

Final report

class ReversedPiece {
private char name;
private int row;

private int col;

private boolean colour;

private boolean pawn;

ReversedPiece (char name, int row, int col, boolean colour,
{

this .name = name;
this.row = row;

this.col = col;
this.colour = colour;
this .pawn = pawn;

}

public void setColour(boolean x) {
this.colour = x;

}

public void setPawn(boolean x) {
this .pawn = Xx;

}

public void setName(char x) {
this .name = X;

}

public void setCol(int x) {
this.col = x;

}

public void setRow(int x) ({
this.row = Xx;

}

public char getName () {
return this .name;

}

public int getCol() {
return this.col;

}

public int getRow () {
return this .row;

}

public boolean getPawn() {
return this .pawn;

}

public boolean isWhite () {
return this.colour;

}

}

boolean pawn)

Barenholz, D

43

TU/e

Technische Universiteit

Eindhoven

Univeraity of Technology Final report

A.7 Code for EAPC17D - Disastrous Doubling

Java:

import

> import
3 import

import
import
import

7 import

o public class
public

10

11

java.
java.
java.
java.
java.
java.
java.

io.BufferedReader;
io.BufferedWriter;
io.IOException;
io.InputStreamReader;
io.OutputStreamWriter ;
math. Biglnteger ;

util . StringTokenizer;

eapcl7d {

static void main(String [] args) throws IOException {

BufferedReader r = new BufferedReader(new InputStreamReader(System.

in));

BufferedWriter w = new BufferedWriter (new OutputStreamWriter (System
.out));

Biglnteger amOfBact = new Biglnteger("1");
String err = "error\n";

// Number of experiments

int

n = Integer.parselnt(r.readLine());

// Go through each experiment
StringTokenizer s = new StringTokenizer(r.readLine ());

for

}

(int 1 = 0; i <= n; i++) {

/' s.nextToken () bacteria used for the next experiment
amOfBact = amOfBact. subtract(new Biglnteger(s.nextToken()));

// Test if there are still enough bacteria

if (amOfBact.compareTo(Biglnteger .ZERO) == —1) {
w.write (err) ;
break ;

}

// Multiply the bacteria by 2
amOfBact = amOfBact. multiply (new Biglnteger("2"));

w. write (amOfBact.mod(new Biglnteger ("1000000007")) + "\n");
w. flush () ;

Barenholz, D

44

Technische Universiteit
T U Eindnoven]
University of Technology Flnal report

B EAPC Cheatsheet

CheatSheet EAPC 2017 - Team e'™ + 1 = 0.

Basics
Sorting
Using Comparator
Binary Search
Bitwise operations

Number Theory
Greatest Common Divisor, Least Common Multiplier
Sieve of Eratosthenes

Maths
Permutations
General maths
Geometry Implementations
Distance between point and line:
Point in Polygon

Graphs

Unweighted graph Algorithms
DFS
BFS
Tarjan’s Algorithm
Topological Sorting (cycle detection)

Weighted graph Algorithms
Dijkstra
Bellman-Ford
Floyd-Warshall (shortest path with negative weights)

- © © © 0w 00 N N N N ~N o O o oo B W w NN

-

Minimum Spanning Tree (using Prim’s) 12
Datastructures 13
Stack / Priority Queue / HashSet / HashMap 13
Pair 14
UnionFind 15
Strings & Sequences 15
Check for duplicate characters in a string and print them. 16
Check if a string is an anagram 16
Print all permutations of a string to the error output. 17
Check if a string is a palindrome 17
Knuth-Morris-Pratt 17
Dynamic Programming 18
Longest Common Subsequence 18
Venus Rover (we solved this together) 19
Knapsack 0/1 20
Golden Rules and Quick Fixes 21
Eclipse Setup 21

Barenholz, D 45

Technische Universiteit
Eindhoven
University of Technology

TU/e

Final report

Basics

Sorting

Never write your own sorting algorithms! Use either built in sorting or comparators.

In Arrays

In Lists

// Create an array to hold all fruits, populate it.
String[] fruits = new String[] {"BFruit", "AFruit"};
// Sort using the following

Arrays.sort(fruits);

// Results will be: "AFruit, BFruit".

// Create a list to hold fruits

List<String> fruits = new ArraylList<String>();
// add items to the list
fruits.add("Pineapple"); fruits.add("Apple");
// sort using the following
Collections.sort(fruits);

Using Comparator

How to use the comparator in the main

A Comparator of type student, sorts by name

public class Main {
public static void main(String[] args) {
ArrayList<Student> ar = new ArraylList<>();
// arbitrarily add students to the list here
Collections.sort(ar, new Sortbyroll());
Collections.sort(ar, new Sortbyname());

class Sortbyname implements Comparator<Student> {
// Used for sorting in ascending order of roll name
@Override
public int compare(Student a, Student b) {
return a.name.compareTo(b.name);

Datastructure for a student

A Comparator of type Student, sorts by rollnumber

class Student {
String name, address;
int rollno;
// Constructor
public Student(int rollno, String name, String
address) {
this.rollno = rollno;
this.name = name;
this.address = address;

class Sortbyroll implements Comparator<Student> {
//Used for sorting in ascending order of roll number
@Override
public int compare(Student a, Student b) {
return a.rollno - b.rollno;

Barenholz, D

46

Technische Universiteit
TU /e i ,
University of Technology Final report

Binary Search

// note : Array has to be sorted
int recursiveBinarySearch(int[] sortedArray, int start, int end, int key) {
if (start < end) { // check if you're still searching
int mid = start + (end - start) / 2; // the middle of the array
if (key < sortedArray[mid]) { // key < value in the middle
return recursiveBinarySearch(sortedArray, start, mid, key);
} else if (key > sortedArray[mid]) { // key > value in the middle
return recursiveBinarySearch(sortedArray, mid+1, end , key);
} else { // key = value in the middle
return mid;
¥
} // 'start' not less than 'end', so nothing found.
return -(start + 1); // this was in the example, so I kept it for consistency

Bitwise operations

void main() {
int 1 = 37; // 00100101 (37 dec)

i = (i << 2); // 10010100 (148 dec) SHIFT 2 places (useful for trees)
i=37&i; // 00000100 (4 dec) -- AND --

i=31]1i; // 00000111 (7 dec) -- OR --

i = ~i; // 11...1000 -- COMPLEMENT --

i=4"15; // 00001011 (11 dec) -- XOR --

Barenholz, D 47

Technische Universiteit
TU /e i)
University of Technology F]nal report

Number Theory

Greatest Common Divisor, Least Common Multiplier

The extended Euclidian algorithm is used in two cases, as described above the algorithms

aX +bY = ged(a,b) aX +bY =c ONLY IF ged(a,b) =1
static long euclidesX, euclidesY, gcd; static long euclidesX, euclidesY, gcd;
static void extendedEuclides(long a, long b) { static void extendedEuclides(long a, long b, long c)
long x = @0, y = 1, lastX = 1, lastY = 0, temp; {
while(b != 0) { extendedEuclides(a, b);
long q = a / b; euclidesX *= c;
long r = a % b; euclidesy *= c;
long ag = a/gcd;
a=b; long bg = b/gcd;
b=r; if (euclidesX < @) {
long steps = (-euclidesX-1)/bg+1;
temp = x; euclidesX += bg*steps;
x = lastX - q * x; euclidesY -= ag*steps;
lastX = temp; }
if (euclidesY < @) {
temp = y; long steps = (-euclidesY-1)/ag+1;
y = lastY - q * y; euclidesX -= bg*steps;
lastY = temp; euclidesY += ag*steps;
} }
ged = a; }
euclidesX = lastX;
euclidesY = lastY;
}

Sieve of Eratosthenes

The sieve of Eratosthenes finds all prime numbers up to some value n. Use it when one needs to check if a
number is prime. Runningtime: O(n(logn)(loglogn))

final int n = 1000; // find it up to n
boolean[] A = new boolean[n]; // boolean array
for (int i = 0; i < n; i++) {
A[i] = true;
}
// set all duplicates to false
for (int i = 2; i < Math.sqrt(n); i++) {
if (A[i] == true) {
for (int multiple = i * i; multiple < n; multiple += i) {
A[multiple] = false;
}
}

} // if A[i] then i is a prime number

Barenholz, D 48

Technische Universiteit
TU /e i ,
University of Technology Final report

Maths

Permutations

Heap’s algorithm takes an array A, and calls the method output for every permutation of A. The method output
can be any operation you wish to run on every permutation of A

static void generate(int[] A) { static void swap(int[] A, int i , int j) {
int n = A.length; // swaps elements at i and j in array A
int[] ¢ = new int[n]; int t = A[i];
output(A); // gives a permutation of A Ali] = A[F];
int i = 1; Alj] = t;
while (i < n) { }

if (c[i] < i) {

if (1% 2==0)
swap(A, 0, i);

} else {
swap(A, c[i], i);

}

output(A); // gives more permutations of A

c[i]++;

i=1;

} else {
c[i] = o;
i+4;

General maths

double e = Math.E;

double pi = Math.PI;

double r = Math.random(); // 0.0 <= r < 1.0

double absoluteval = Math.abs(numberOne); // absolute value
double logBaseE = Math.log(numberOne); // returns e”a

double logBasel® = Math.logl@(numberOne);

double eToThePowerX = Math.exp(numberOne); // equal to Math.pow(e, numberOne)
double root = Math.sqrt(numberOne);

int ceilingOfX = (int) Math.ceil(numberoOne);

int floorOfX = (int) Math.floor(numberOne);

int roundANumber = (int) Math.round(numberoOne);

int max = (int) Math.max(numberOne, numberTwo);

int min = (int) Math.min(numberOne, numberTwo);

int pow = (int) Math.pow(numberOne, numberTwo);

double AngleToDegrees = Math.toDegrees(radianAngle);

double AngleToRadian = Math.toRadians(degreeAngle);

double sinusOfAngle = Math.sin(numberOne); // a in radians
double cosineOfAngle = Math.cos(numberOne); // a in radians
double tangentOfAngle = Math.tan(numberOne); // a in radians

Barenholz, D 49

Technische Universiteit
Eindhoven
University of Technology

TU/

Final report

Rounding to n decimal digits:

DecimalFormat fourDigitsRound = new DecimalFormat("#.0000");
double x = 21341241.154951345;
System.out.println(fourDigitsRound.format(x)); // returns 21341241.1550

Geometry Implementations

Line / Circle

Point

class Point {
double x, y;
Point(double nx, double ny) {
this.x = nx; this.y = ny;

class Line {

Point p1, p2;

Line(double plx, double ply,
double p2x, double p2y)

} {
Point() {} pl = new Point(plx, ply);
// implement methods as seen fit p2 = new Point(p2x, p2y);
Point sub(Point p, Point q) { }

return new Point (p.x - q.x, p.y - q.y); Line() {

pl = new Point(@, 0);
double inp(Point p, Point g, Point 0) { p2 = new Point(@, 0);
return (p.x - 0.x) * (gq.x - 0.x) + (p.y - 0.x) * (q.y - 0.x); }

¥

double inp(Point p, Point q) {

return Point.inp(p, g, new Point(@, 0));

by
double hat(Point p, Point q){
return p.x * q.y - p.y * q.x;

class Circle {
Point center;
double radius;
Circle(double cx, double cy,

double r)
double cross(Point A, Point B, Point 0) { {

return (A.x - 0.x) * (B.y - 0.y) - (A.y - 0.y) * (B.x - 0.x); center = new Point(cx, cy);

} radius = r;
double cross(Point A, Point B) { }
return cross(A, B, new Point(@, 0)); Circle() {
} center = new Point(@, 0);
} radius = 1;
}
}

Distance between point and line:

double dist(Point p, Line 1, boolean line) {
Point q1, q2;

ql = 1.p1;
q2 = 1.p2;
if (line) {

if (Point.inp(Point.sub(p, q1), Point.sub(q2, ql1)) < @) {
return Math.sqrt(Point.inp(Point.sub(p, ql1), Point.sub(p, ql)));

}
if (Point.inp(Point.sub(p, gq2), Point.sub(ql, q2)) < 0) {

return Math.sqrt(Point.inp(Point.sub(p, q2), Point.sub(p, q2)));
¥

}
return Math.abs(Point.hat(Point.sub(p, q1), Point.sub(q2, q1)))
/ Math.sqrt(Point.inp(Point.sub(q2, q1), Point.sub(q2, q1)));

}

double dist(Point p, Line 1) {
return dist(p, 1, false);

}

Barenholz, D 50

Technische Universiteit
Eindhoven
University of Technology

Final report

Point in Polygon

int inPoly(Point P, ArrayList<Point> V) {
int i, j = V.size() - 1, c = 0;
for (i = 0; 1 < V.size(); j = i++) {
if ((V.get(j).y <= P.y) && (P.y < V.get(i).y) && (Point.cross(P, V.get(j), V.get(i)) > 0)) {
++C;

¥
if ((V.get(i).y <= P.y) && (P.y < V.get(j).y) && (Point.cross(P, V.get(j), V.get(i)) > 0)) {
--c;
}
}

return c;

}

Graphs

Unweighted graph Algorithms

DFS

void DFS(Graph graph , int start) {
Stack <Integer > nextStack = new Stack <Integer >();
Stack <Integer > traversed = new Stack <Integer >();
// Enqueue root
nextStack.push(start);
while (!nextStack.isEmpty()) {
// Dequeue next node for comparison and add it 2 list of traversed nodes
int node = nextStack.pop();
System.out.println(node); // do something with node
traversed.push(node);
// Enqueue new neighbors
for (int i = ©; i < graph.vertices.get(node).con.size(); i++) {
int neighbor = graph.vertices.get(node).con.get(i).first;
if (!traversed.contains(neighbor) && !nextStack.contains(neighbor)) {
nextStack.push(neighbor);
}
}
}
}

BFS

void BFS(Graph graph , int begin) {
ArraylList <Integer > Q = new ArrayList <Integer >();
boolean visited[] = new boolean[NUM];
visited[start] = true;
Q.add(start);
while (!Q.isEmpty()) {
int nu = Q.get(0);
Q.remove(0);
for (int i = @; 1 < graph.vertices.get(nu).con.size(); i++) {
int to = graph.vertices.get(nu).con.get(i).first;
if (lvisited[to]) {
visited[to] = true;
Q.add(to);
System.out.println(to);
}
}
}
}

Barenholz, D

51

Technische Universiteit
Eindhoven
University of Technology

Final report

Tarjan’s Algorithm

//algorithm for searching all strongly connected components in a graph
int index = 9;
ArrayList <Node> stack = new ArraylList <Node >();
ArrayList <ArrayList <Node>> SCC = new ArraylList <ArrayList <Node >>();
ArrayList <ArrayList <Node>> tarjan(Node v, AdjacencylList list){
v.index = index;
v.lowlink = index;
index++;
stack.add(e, v);
for(Edge e : list.getAdjacent(v)){
Node n = e.to;
if(n.index == -1){
tarjan(n, list);
v.lowlink = Math.min(v.lowlink , n.lowlink);
} else if(stack.contains(n)){
v.lowlink = Math.min(v.lowlink , n.index);

}
if(v.lowlink == v.index){
Node n;
ArrayList <Node> component = new ArrayList <Node >();
do {

n = stack.remove(9);
component.add(n);
} while(n != v);
SCC.add(component) ;

return SCC;

Topological Sorting (cycle detection)

static int N; // input: number of nodes

static IntegerList[] edges; // input: edge nodes from a are in edges[a]
static List<Integer> L; // output: ordered list of nodes

static int[] marked; // used by topological sort

static boolean topologicalSort() { // returns false if graph has cycle
L = new ArrayList<>(N);
marked = new int[N];
for (int i = @; 1 < N; i++) {
if (marked[i] == @) {
if (!visit(i)) {
return false;
¥
¥
}
return true;
}
static boolean visit(int n) {
if (marked[n] == 1) {
return false;

}
if (marked[n] == 0) {
marked[n] = 1;
for (int m : edges[n]) {
if (lvisit(m)) {
return false;

}

}
marked[n] = 2;
L.add(n);

return true;

¥

Barenholz, D

52

Technische Universiteit
TU /e i)
University of Technology F]nal report

Weighted graph Algorithms

Dijkstra (Single source shortest path)

static class Edge {
int from, to, length;
Edge(int from, int to, int length) {this.from = from; this.to = to this.length = length }

static class Edgelist extends ArrayList<Edge> {}
static class Path {
static Comparator<Path> C = (p1, p2) ->

{
int dCompare = Integer.compare(pl.dist, p2.dist);
if (dCompare != 0) {
return dCompare;
¥
return Integer.compare(pl.node, p2.node);
s

int node, dist;

Path(int node, int dist) {
this.node = node;
this.dist = dist;

¥

// N: number of nodes, nodes reachable (edge.to) from a: edges[a]
static void dijkstra(int N, Edgelist[] edges, int initialNode, int goal) {
int[] best = new int[N];
Arrays.fill(best, Integer.MAX_VALUE);
Queue<Path> Q = new PriorityQueue<>(Path.C);
best[initialNode] = ©;
Q.add(new Path(initialNode, 9));
while (Q.size() > @) {
Path p = Q.poll();
if (p.dist >= best[goal]) {
break;

}
if (p.dist > best[p.node]) {
continue;
¥
for (Edge e : edges[p.node]) {
int nd = p.dist + e.length;
if (nd < best[e.to]) {
best[e.to] = nd;
Q.add(new Path(e.to, nd));

¥
¥
// now use best[goal] for the distance to target

Bellman-Ford (Single source shortest path)

public class BellmanFord{
LinkedList<Edge> edges;
int d[], p[];
int n, e, s;
final int INFINITY = Integer.MAX_VALUE;

private static class Edge {
int u, v, w;

public Edge(int a, int b, int c¢) {

u=a;
v = b;
W= C;
}
}

BellmanFord() throws IOException {

Barenholz, D 53

Technische Universiteit
Eindhoven
University of Technology

Final report

int item;
edges = new LinkedList<Edge>();
BufferedReader inp = new BufferedReader(new InputStreamReader(System.in));

System.out.print("Enter number of vertices ");
n = Integer.parseInt(inp.readLine());

System.out.println("Cost Matrix");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
item = Integer.parselInt(inp.readLine());
if (item != 0)
edges.add(new Edge(i, j, item));
}

¥

e = edges.size();

d = new int[n];

p = new int[n];

System.out.print("Enter the source vertex ");
s = Integer.parseInt(inp.readLine());

}

void relax() {
int i, j;
for (1 =0; 1 < n; ++1) {
d[i] = INFINITY;
p[i] = -1;
}

d[s] = ©;
for (i =0; 1 <n - 1; ++1i) {
for (j = 0; j < e; ++j) { // here i am calculating the shortest path
if (d[edges.get(j).u] + edges.get(j).w < d[edges.get(j).v]) {
d[edges.get(j).v] = d[edges.get(j).u] + edges.get(j).w;
p[edges.get(j).v] = edges.get(j).u;

}
}
}

boolean cycle() {
int j;
for (j = 0; j < e; ++j)
if (d[edges.get(j).u] + edges.get(j).w < d[edges.get(j).v])
return false;
return true;

}

void print() {
for (int i = 0; i < n; i++) {
System.out.println("Vertex
}
}

+ 1 + " has predecessor " + p[i]);

public static void main(String args[]) throws IOException {
BellmanFord r = new BellmanFord();
r.relax();
if (r.cycle()) {
for (int i = 0; i < r.n; i++)
System.out.println(r.s + "
} else {
System.out.println(" There is a negative edge cycle ");

==> "+ r.d[i]);

r.print();

10

Barenholz, D 54

Technische Universiteit
TU /e i ,
University of Technology Final report

Floyd-Warshall (all-pairs shortest path)

void FloydWarshall(Graph graph) { class Graph {
for (int i = ©; i < graph.numVertices; i++) { final static int MAX_VERTS = 1000;
for (int j = ©; j < graph.numVertices; j++) { final static int LARGE =
if (1 == 3) { Integer.MAX_VALUE - 3000;
graph.path[i][j] = ©; int path[][];
} else { int numVertices;
if (graph.path[i][j] == @) {
graph.path[i][j] = Graph.LARGE; Graph() {
} path = new int[MAX_VERTS][];
if (graph.path[j][i] == @) { for (int i = ©; i < MAX_VERTS;
graph.path[j][i] = Graph.LARGE; i++) {
} path[i] = new int[MAX_VERTS];
}
} }
void AddEdge(int a, int b, int
for (int k = @; k < graph.numVertices; k++) { capacity) {
for (int i = ©; i < graph.numVertices; i++) { this.path[a][b] = capacity;
for (int j = ©; j < graph.numVertices; j++) { }
System.out.println("k = " + k + ", i =" +1+ ", j ="+ }
3);
System.out.println("path[i][j] = " + graph.path[i][j]);
System.out.println("path[i][k] + path[k][j] = " +
graph.path[i][k] + " + " + graph.path[k][j]);
graph.path[i][j] = Math.min(graph.path[i][j], class Edge {
graph.path[i][k] + graph.path[k][j]); int's, t, r;
} }
}
¥
// graph.path contains the shortest path from each node to each
node
// if value equal to LARGE, impossible to reach
}

11

Barenholz, D 55

Technische Universiteit
TU /e i)
University of Technology F]nal report

Minimum Spanning Tree (using Prim’s)

public class Prim {

// Prim-Jarnik's algorithm to find MST rooted at s

public static int[] prim(WeightedGraph G, int s) {
final int[] dist = new int[G.size()]; // shortest known distance to MST
final int[] pred = new int[G.size()]; // preceding node in tree
final boolean[] visited = new boolean[G.size()]; // all false initially
for (int i = @; i < dist.length; i++) {

dist[i] = Integer.MAX_VALUE;

dist[s] = 0;
for (int i = @; i < dist.length; i++) {
final int next = minVertex(dist, visited);
visited[next] = true;
// The edge from pred[next] to next is in the MST (if next!=s)
final int[] n =

for (int j = @;
final int v

.neighbors(next);
< n.length; j++) {
n[jl;

(RS~

final int d = G.getWeight(next, v);
if (dist[v] > d) {

dist[v] = d;

pred[v] = next;
}

}
}
return pred; // (ignore pred[s]==0!)
}

private static int minVertex(int[] dist, boolean[] v) {
int x = Integer.MAX_VALUE;
int y = -1; // graph not connected, or no unvisited vertices
for (int i = @; i < dist.length; i++) {
if (!v[i] && dist[i] < x) {
y = i
x = dist[i];
¥
}

return y;

12

Barenholz, D 56

Technische Universiteit
TU /e i ,
University of Technology Final report

Datastructures

Stack / Priority Queue / HashSet / HashMap

Stack
Stack <Integer > S = new Stack <Integer >();
S.push(num); // put 'num' on stack
S.peek(); // return top elem
S.pop(); // return and remove top elem
HashSet

HashSet <Integer > set;
set = new HashSet<Integer >();
Iterator <Integer > iter = set.iterator();
int i;
while (iter.hasNext()) {
i = iter.next();
System.out.println(i + + set.contains(i));
} // prints 1 => true, 2 => true,

=>

Priority Queue (0 = highest priority)

PriorityQueue <Pair<Integer , String >> Q;

Q = new PriorityQueue <Pair<Integer , String >>();
Q.add(new Pair<Integer , String >(valOfStr, "StringHere"));
Q.remove(); // return and remove highest priority

HashMap, map integer to list of integers

HashMap <Integer , ArraylList <Integer >> map;

map = new HashMap <Integer , ArraylList <Integer >>();

for (int i = @; 1 < n; i++) {
map.put(i, new ArrayList <Integer >()); // at i, put new list
map.get(i); // get value at i,

}

13

Barenholz, D 57

Technische Universiteit
T U @ Eniovn)
University of Technology F]nal report

Pair

// implements pairing support in Java of types E and F (e.g. string, integer, list, ..)
class Pair<E, F> implements Comparable<Pair<Eg, F>> {
E first;
F second;
Pair(E first, F second) {
super();
this.first = first;
this.second = second;

}
public boolean equals(Object other) {
if (other instanceof Pair) {
Pair otherPair = (Pair) other;

return ((this.first == otherPair.first
|| (this.first != null && otherPair.first != null && this.first.equals(otherPair.first)))
&& (this.second == otherPair.second || (this.second != null && otherPair.second != null

&& this.second.equals(otherPair.second))));

return false;

}

public int compareTo(Pair<E, F> otherP) {
if (first instanceof Comparable) {
final int k = ((Comparable<E>) first).compareTo(otherP.first);
if (k > @) {
return 1;

¥
if (k < 0) {
return -1;

}

if (second instanceof Comparable) {
final int k = ((Comparable<F>) second).compareTo(otherP.second);
if (k > @) {
return 1;

}
if (k < 9) {
return -1;

}

}

return 0;

}
}

14

Barenholz, D 58

Technische Universiteit
e Eindhoven
University of Technology

Final report

UnionFind

public class UF {
static void unionFindInit(int N) {
root = new int[N];
rank = new int[N];
for (int i = 1; 1 < N; i++) {
root[i] = i;
} // now use find(x) and merge(x, y)

static int[] root, rank; // find the group x belongs to
static int find(int x) {
if (root[x] != x) {
root[x] = find(root[x]);

return root[x];
} // merge the groups xand y belong to

static void merge(int x, int y) {

x = find(x);

y = find(y);

if (x ==y) {
return;

}
if (rank[x] < rank[y]) {

root[x] = vy;
} else if (rank[x] >= rank[y]) {
root[y] = x;
if (rank[x] == rank[y]) {
rank[x]++;
}

Strings & Sequences

Stringbuilder >>> Using a normal string and adding manually (speed)

// Create a new StringBuilder

StringBuilder sb = new StringBuilder();

// Add stuff to the string

sb.append("strings here, always include a newline when needed \n");
System.out.println(sb.toString());

15

Barenholz, D

59

Technische Universiteit
Eindhoven
University of Technology

Final report

Check for duplicate characters in a string and print them.

public class FindDuplicateCharacters {
public static void main(String args[]) {
printDuplicateCharacters("Programming”);
printDuplicateCharacters("Combination");
printDuplicateCharacters("Java");
}
/*
* Find all duplicate characters in a String and print each of them.
*/
public static void printDuplicateCharacters(String word) {
char[] characters = word.toCharArray();
// build HashMap with character and number of times they appear in
// String
Map<Character, Integer> charMap = new HashMap<Character, Integer>();
for (Character ch : characters) {
if (charMap.containsKey(ch)) {
charMap.put(ch, charMap.get(ch) + 1);
} else {
charMap.put(ch, 1);

}
// Iterate through HashMap to print all duplicate characters of String
Set<Map.Entry<Character, Integer>> entrySet = charMap.entrySet();
System.out.printf("List of duplicate characters in String '%s' %n", word);
for (Map.Entry<Character, Integer> entry : entrySet) {
if (entry.getValue() > 1) {
System.out.printf("%s : %d %n", entry.getKey(), entry.getValue());

Check if a string is an anagram

boolean isAnagram(String word, String anagram) {
char[] charFromWord = word.toLowerCase().toCharArray();
char[] charFromAnagram = anagram.toLowerCase().toCharArray();
Arrays.sort(charFromWord) ;
Arrays.sort(charFromAnagram) ;
return Arrays.equals(charFromWord, charFromAnagram);

16

Barenholz, D 60

Technische Universiteit
TU /e i ,
University of Technology Final report

Print all permutations of a string to the error output.

public class test {
public static void main(String args[]) {
permutation("XYZ");

public static void permutation(String input) {
permutation("", input);

}

private static void permutation(String perm, String word) {
if (word.isEmpty()) {
System.err.println(perm + word);
} else {
for (int i = ©; i < word.length(); i++) {
permutation(perm + word.charAt(i), word.substring(@, i) + word.substring(i + 1, word.length()));
}
}
}
}

Check if a string is a palindrome

boolean isPalindromString(String text) {
String reverse = reverse(text);
if (text.equals(reverse)) {
return true;
}
return false;
}
static String reverse(String input) {
if (input == null || input.isEmpty()) {
return input;
}
return input.charAt(input.length() - 1) + reverse(input.substring(@, input.length() - 1));

Knuth-Morris-Pratt (=Given a string S, find all occurrences of S in a big string)

public class Main {
public int[] preProcessPattern(char[] ptrn) {
inti =0, j=-1;
int ptrnLen = ptrn.length;
int[] b = new int[ptrnLen + 1];

b[i] = J;
while (i < ptrnLen) {
while (j >= @ && ptrn[i] != ptrn[j]) {
// if there is mismatch consider the next widest border
// The borders to be examined are obtained in decreasing order
// from the values b[i], b[b[i]] etc.

Jj=0b[il;
i+4;
J++;
b[i] = J;
return b;

17

Barenholz, D 61

Technische Universiteit
e Eindhoven
University of Technology

Final report

Dynamic Programming

Longest Common Subsequence

/* Dynamic Programming Java implementation of LCS problem */
public class LCS {

/* Returns length of LCS for X[@..m-1], Y[@..n-1] */
int lcs(char[] X, char[] Y, int m, int n) {
int L[][] = new int[m + 1][n + 1];

/*
* Following steps build L[m+1][n+1] in bottom up fashion. Note that
* L[i][j] contains length of LCS of X[@..i-1] and Y[0@..j-1]

*/
for (int i = 0; i <=m; i++) {
for (int j = 0; j <= n; j++) {
if (i ==0 || j==0)
L[i][]] = e;
else if (X[i - 1] == Y[] - 1])
L[i][J] = L[i - 1][J - 1] + 1;

else
L[i1[3] = max(L[i - 1][3]1, L[il1[3 - 11);

return L[m][n];

/* Utility function to get max of 2 integers */
int max(int a, int b) {
return (a > b) ? a : b;

}

public static void main(String[] args) {
LCS 1lcs = new LCS();
String s1 = "AGGTAB";
String s2 = "GXTXAYB";

char[] X = sl.toCharArray();
char[] Y = s2.toCharArray();
int m = X.length;
int n = Y.length;

System.out.println("Length of LCS is" + " " + lcs.lcs(X, Y, m, n));

18

Barenholz, D

62

Technische Universiteit
Eindhoven
University of Technology

Final report

Venus Rover (we solved this together)

/%%
* @author Daniel, Nihal, Storm; Problem: EAPC 2005 H - Venus Rover
*/
public class venusrover {
// main method, run the program
public static void main(String[] args) throws IOException {
(new venusrover()).run();

void run() throws IOException {
// A buffered reader to read and writer to write.
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out));
int cases = Integer.parselnt(r.readLine());
while (cases-- > 0) {
StringTokenizer s = new StringTokenizer(r.readLine());
int numStones = Integer.parseInt(s.nextToken());
int timeLeft = Integer.parseInt(s.nextToken());
int maxCapacity = Integer.parseInt(s.nextToken());
// Store the time, mass and value of all stones in their own array
int[] stoneTime = new int[numStones];
int[] stoneMass = new int[numStones];
int[] stoneval = new int[numStones];
for (int i = ©; i < numStones; i++) {
s = new StringTokenizer(r.readLine());
stoneTime[i] = Integer.parseInt(s.nextToken());
stoneMass[i] = Integer.parseInt(s.nextToken());
stoneval[i] = Integer.parseInt(s.nextToken());
¥
/%%
* F(N,M,T) denotes the optimal profit for taking N stones, with
* weight M and time to return T
*/
int[][][] table = new int[numStones + 10][maxCapacity + 10][timeLeft + 10];
// Fill the table
for (int i = @; i1 <= (numStones); i++) {
for (int m = @; m <= (maxCapacity); m++) {
for (int t = 0; t <= (timeLeft); t++) {
if ((1==0) || (m==20) || (t==29)) {
table[i][m][t] = ©;
} else if ((stoneTime[i - 1] <= t) && (stoneMass[i - 1] <= m)) {
table[i][m][t] = Math.max(table[i - 1][m][t],
table[i - 1][m - stoneMass[i - 1]][t - stoneTime[i - 1]] + stoneVal[i - 1]);

} else {
table[i][m][t] = table[i - 1][m][t];
¥
}
}
w.write(table[numStones][maxCapacity][timeLeft] + "\n");

}
flush();

W.
}
}

19

Barenholz, D

63

Technische Universiteit
TU /e i ,
University of Technology Final report

Knapsack 0/1

static List<Integer> knapsack(int capacity, int n, int[] values, int[] weights) {
int[][] bestValue = new int[n + 1][capacity + 1];
for (int i = 1; 1 <= n; i++) {
int itemIndex = i - 1;
for (int j = @; j <= capacity; j++) {
int weightIfNotIncluded = bestValue[i - 1][j];
if (j >= weights[itemIndex]) {
int weightIfIncluded = bestValue[i - 1][j - weights[itemIndex]] + values[itemIndex];
bestValue[i][j] = Main.max(weightIfIncluded, weightIfNotIncluded);
} else {
bestValue[i][j] = weightIfNotIncluded;
}
¥
¥

// you can check the bestValue[n][capacity] here for example
// backtrack the chosen items (optional)
List<Integer> chosen = new ArrayList<>();
int j = capacity;
for (int i =n; 1 > 0; i--) {
if (bestValue[i][j] != bestValue[i - 1][j]) {
int itemIndex = i - 1;
chosen.add(itemIndex);
j -= weights[itemIndex];
¥
}
return chosen;

}

static int max(int a, int b) {
return (a > b) ? a : b;

}

Common problems with DP implementation

e The dimensions of the table in a DP should be 1 bigger than the actual values, since the 0th row and
columns are initial values.
The loopbounds when filling in the table should be "i <= X", not "i < X"
We should account for indexing offset (in venusrover: in stoneTime, stoneMass and stoneVal) in the
recursion.

20

Barenholz, D 64

Technische Universiteit
TU /e i)
University of Technology F]nal report

Golden Rules and Quick Fixes

1. Think before you code

2. Always choose the simplest solution that is fast enough
3. Code carefully rather than fast

Wrong Answer?: Check:

- Loop bounds / array bounds / initialization / output correctness / nesting / precision / overflow / invalid expressions
/ index offset / rounding / reading the input / boundary cases / copying mistakes.
Runtime error? Check:
- Runtime error means that there was an error. Go through the code and see where the error may occur (e.g.
NullPointer with array bounds / invalid expressions / out of memory (shouldn't happen))

Time-limit-exceeded? Check:
- Algortihm speed? / Infinite loop? Simple optimizations?

Eclipse Setup

Window > Preferences > Editor > Save-Actions > Auto-imports
Window > Preferences > Java > Editor > Templates > new > enter template there:

The reason for following template: We do not need to work in the main, hence bothering making things static.
Furthermore we can use auxiliary function easily. Secondly: Use your favourite reading and writing tools!

Our template we will use while coding.

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.Scanner;

public class Main {
public static void main(String[] args) throws IOException {
(new Main()).run();

}

void run() throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out));
Scanner sc = new Scanner(System.in);
StringBuilder sb = new StringBuilder();

sb.append("\n");

w.write(sb.toString());

// Note: A bufferedWriter only takes strings, so add "\n" to the end for a new line!!
w.flush(); // Needed for bufferedwriter

Important shortcuts:

To use the above made template, type a 't' (the character t), then press CTRL+SPACE. Eclipse will automatically put
down above template. Another very useful tool in Eclipse is multi-renaming. This is done by the combination
ALT+SHIFT+R. Furthermore, you can automatically clean code with CTRL+SHIFT+F.

21

Barenholz, D 65

Technische Universiteit
e Eindhoven
University of Technology

Final report

C Seminar Slides

TU/e

Daniél Barenholz

TU/e

Looks ?
TE -FORCE DYNAMIC
ngl_mgff PROGRAMMING SELUNG ON EBAY:
o(n!) ALGORITHMS: o()
ﬂ. O (ﬂlzﬂ)
STILL LJORKING

ON Yt ROUTEZ

-~

HEL

Image taken from hitps //xkcd.com/399/

Refreshing: TU/e

Requires optimal substructure.
Avoids re-computing subproblems by storing
solutions.

Running time depends on number of
subproblems.

Very common in programming contests.

Information taken from Kevin's slides. Check Canvas, you've ot access to it

Problem:

Choice:
Subproblem:

Recurrence:

Compute base cases:
Use the recurrence to compute the rest.

Information taken from Kevin's slides. Check Canvas, you've ot access to it

knapSack(W, wt, val, n):
K = [[0 for x range(W+1)] for x range(n+1)]

n+l):

nge(W+1):

elif wt[i-1]
K[1][w] x(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
else:

K[i][w] = K[1-11[w]

eturn K[n][W]

Code taken from https./ws ~problem/.

TU/e

Refreshing DP?

EAPC 2005 H, EAPC 2014 D, EAPC 2012 E

Spiderman @ open.kattis.com
Treasure Diving @ open.kattis.com
Ocean's Anti-11 @ppen.kattis.com
Dangerous Skiing @ open.kattis.com

Committee Assignment (also requires Inclusion-
exclusion, Graph coloring) @open.kattis.com

Barenholz, D

66

Technische Universiteit
Eindhoven
University of Technology

Final report

Refreshing: TSP

o Travelling Salesmen Problem.
o Given n cities and distances between them.
o Find shortest tour visiting all cities.
o Find permutation of {1, ..., n}.

Information and graph taken from Bart's slides from 2ILCO. 7

Recursive: TSP 1'\5.'\.5/.

Algorithm 75P_BruteForce 1R, § :;:g;“\‘fs’l‘t";‘gl T

1if Sis empty Initially; {1}
2. then minCost« length of the tour represented by R

3. else S:= set of remaining
4. for each city /in Sdo cities. Initially; {2, ..., n);
5. Remove /from S and append /to R .
6. minCost«— min(minCost, TSP_BruteForce1R, §)

7. Reinsert /in § and remove /from R

8.return minCost

Information and graph taken from Bart's slides from 2ILCO. 8

/
Solving: TSP-DP 1'\5}'\.5/
e Subproblem:

C(S, i}= Considering starting at city 1, going through
each city in the set S, and ending in city i, this is the
shortest possible path.

Bellman-Held-Karp

o C(S, i}= Considering starting at city 1, going
through each city in the set S, and ending in city |,
this is the shortest possible path.

e Recurrence:

dist[1][i] if § = {i}
C(8,i) = { E115-‘1113#_0(3 —{i}, s) + dist[s|[i] otherwise

o Base-cases:
o S=0:C(0,i) = dist[1][i]

Barenholz, D

67

Technische Universiteit
Eindhoven
University of Technology

Final report

[dist)fi i£5 = {i}
C(S8,i) = { sEn;if}laéiC(S — {i}, s) + dist[s][i] otherwise

4

BeIIman—HeId-KarpTU/_e

To Tokyo Osaka Nagoya Kyoto
From = KK B2EHE =R

5 C({2,3},2) + dist[2][4]
C({2,3,4},4 .
5 { L) C({2,3},3) + dist[3][4]
... B N
~ Bellman-Held-Karp Bellman-Held-Karp
Base case:S = @ : C(0,i) = dist[1][i] : Base case:S = @ : C(0,i) = dist[1][i]
Recurrence: c(s.i) ={ :si?;‘[:g(ls—{i},s)+distla][i] Etfe:wtl Recurrence: c(s,) :{:;:E]g(ls = {i}.s) + dist[s][i] Ej;wﬁ
e We choose Tokyo (T) as starting city (1). : o We choose Tokyo (T) as starting city (1). :
[} o N K o,N 0,k KN OKN [} o N K o,N 0K KN OKN
o o 503
... B R
~ Bellman-Held-Karp ~ Bellman-Held-Karp
Base case:S = @ : C(9,i) = dist[1][i] Base case:S = @ : C(0,i) = dist[1][i]
: i = : dist]1][i 5= (i
: Recurrence: C(Sn)={J;?i‘ltg(]sf{;},s;msq,][f] Eﬂfmwti : Recurrence: G‘(Su!={n??;‘[f%:(]&{e},snds.q.][;] othm'wtl
o We choose Tokyo (T) as starting city (1). o We choose Tokyo (T) as starting city (1).
[} Starting city: T (% o Starting city: T
] ® Ending city: O : Ending city: N
: Cities to pass through: {0} : o 503 503 Cities to pass through: {0}
: C(s,0) = dist[1][1] : (5,0 = C({0}N)
: : = C({0} = {N},0) + dist[0][N]
: : = C({0},0) +179

Barenholz, D

68

Technische Universiteit
e Eindhoven
University of Technology

Final report

Bellman-Held-Karp
Base case:S = @ : C(0,i) = dist[1][i]
dist[1]i] if§ = {i}

Recurrence: o(s.i) { min C(§ - {i},) + dist[s][i] otherwise

W e choose Tokyo (T) as starting city (1).

(4] o Starting city: T
Ending city: K
Cities to pass through: {0}

€S, =C{o}K)

K 453 = C({0} - {K},0) + dist[0][K]
=C({0},0) +56

Bellman-Held-Karp

Base case:S = @ : C(0,i) = dist[1][i]
dist[1]i] if5 = {i}
Recurrence:c(s,i {J‘,\.ﬁ,.,“(-(_.,‘ {i),5) + distls]fi] otherwise
W e choose Tokyo (T) as starting city (1).
(] o N K o,N 0,K KN OKN
o 503 503 526 509 526 509 538 538
N 347 682 347 588 682 688 588 688

K 453 559 482 453 582 559 482 582

Bellman-Held-Karp

[o N K O,N 0,K KN OKN

o 503 503 526 509 526 509 538 538
N 347 682 347 588 682 688 588 688

K 453 559 482 453 582 559 482 582

Final result?

min C(S — {1}, K) + dist[} 1]

In this case: 1035.

Bellman-Held-Karp

C(S, i) = Considering starting at city 1, going through each city in
the set S, and ending in city i, this is the shortest possible path.

function algorithm TSP (G, n)
for k := 2 to n do
CHk}, k) =d,,
end for

for s := 2 to n-1 do
forall sc {2, . . . , n}, |S] = s do
for all k € S do
C(S, K = min,, . [C(S\M{K}, m) + d,,]
end for
end for
end for

opt := min_, [C({2, 3, - . . , n}, k) +d.,]
return (opt)
A

Implementation

Representing subsets?
Use Bits!

Pseudocode:
for k := 2 to n do
C({K}., k) :=d,,

end for

Python:
Set transition cost from initial state

for k in range(l, n):
CL(1 << k, k)] = (dists[0][k], 0)

C[(‘'subset, last node passed)] .= (distance, starting node)

Implementation

Pseudocode:
for s := 2 to n-1 do

for all Sc {2, ... ,n} [S| =sdo
Python:

for subset_size in range(2, n):
for subset in it.combinations(range(l, n), subset_size):

Note: itertools isn’t the fastest.

Barenholz, D

69

Technische Universiteit
Eindhoven
University of Technology

TU/

Final report

Implementation

Pseudocode:
for all k € S do

C(S, k) :=min_, . [C(S\{k}, m) + d, .1
end for

Python:
Set bits for all cities in this subset
bits = 0
for bit in subset:
bits |= 1 << bit

Find the lowest cost to get to this subset
for k in subset:
prev = bits & ~(1 << k)
res =
for m in subset:
ifm==0orms==
continue
res.append((C[(prev, m)][0] + dists[m][k], m))

C after computing all values:
Distance Matrix: {

0 503 347 453 (0010, 1): (503, 0),

503 0 179 56 (0100, 2): (347, 0),

347 179 0 135 (1000, 3): (453, 0),
453 56 135 0O

(0110, 1): (526, 2),

(0110, 2): (682, 1),

(1010, 1): (509, 3),

(1010, 3): (559, 1),

: (1100, 2): (588, 3),

- Optimal cost: 1035 (1100, 3): (482, 2),
- Optimal path: [0, 3,

‘1, 2, 0] (1110, 1): (538, 3),

(1110, 2): (688, 1),

(1110, 3): (582, 1)

C[(bits, k)] = min(res) }
... . T RN
Visualisation
o https://visualgo.net/en/tsp
... N
Bit: Operations
e AND:a &b 5&3:0101 & 0011> 0001 =1
e OR:a|b 5/3:0101&0011>0111=7
e NOT:~a ~5:~0101> 1010 =-6
e XOR:a”b 5A3:010140011> 0110 =6
o Left-shift: a<<b
o a*2'"b 5<<3:0101<<3 > 0101000 =40
o Right-shift: a >>b
o al2b 5>>3 :0101>>3 > 0000 =0
... B

Barenholz, D

70

Technische Universiteit
(3 Eindhoven
University of Technology

Final report

GC2017D:

| WAN . '-
AMERICA

GREAT AGAIN *

GC2017D:

Take and give.
1 <= K <= 15 communities
0 <= C_i <= 100 money to be stolen
1 <= N <= 100 friends
1 <= B_i <= 1000 reimbursement
It's all about reputation!
1 <= P_ij <= 10 gained when stealing
1 <= D_i <= 10 lost when reimbursing

How many friends can Trump make happy?

GC2017D:

Where is the subset DP?

GC2017D:

Where is the subset DP?
How much reputation can be gained?

int reputation(int k):
int maskSize = 2"k - 1
initialize DP table of maskSize by k

for i = 1 to 27k — 1 do:
for j = 0 to k do:
if community j has been robbed:
continue
for h = 0 to k do:
if community h has been robbed:
continue
else set dp[i][j] to:
maximum of stealing from community j after k

dp[i][3] = max(dp[1[i], dplt - (1 << §)I[K] + MIKI[31);

if ((1 & (1 << j)) == 0) continue;
i=4 i=4
j:4 j:2
4&(1<<4)== 4&(1<<2)=I=0
0100 & (1 << 4) 0100 & (1 << 2)
0100 & (10000) 0100 & (0100)

Barenholz, D

71

Technische Universiteit
e Eindhoven
University of Technology

Final report

Steiner Tree

Problem: Steiner Tree

» Given some weighted graphG = (V,E) with
k terminals in some setS, find a minimum
cost tree T(S) connecting these points.

Solution: Dreyfus-Wagner

o Given some weighted graphG = (V,E) with
k terminals in some setS, find a minimum
cost free T(S) connecting these points.

o Compuftes optimal trees T(X U v) for all
X € S Av €V recursively.

Solution: Dreyfus-Wagner

o Computes optimal freesT(X Uv) forall X € S A
v € V recursively.
o Assumev /s a leaf of the optimal T (X U v).
o [t is joined fo some nodew of T(X U v) along
shortest path P,,,.
o Eitherw /s a Steiner node W & X) or it is not.
o Split X into nontrivial bjpartition X' and X"'.
o TXUv)=minP,, UT (X' Uw)UTX" Uw)

Treewidth

Barenholz, D

72

Technische Universiteit
e Eindhoven
University of Technology

Final report

Problem:

A measure for how tree-like a graph is.
Measured by decomposing graphs into trees of

Tree:

Decomposing graphs into trees of bags:
If two nodes are neighbours, there is a bag

bags. containing both of them.
If two nodes are neighbours, there is a bag
containing both of them. For every v, all bags containing v form a
For every v, all bags containing v form a connected subtree.
connected sublree.
Tree: Tree:

Width of decomposition: Size(largest bag) — 1.
Treewidth:tw (G) =min (width of decomposition)

Given graph G and integer w, decide if
treewidth is at mostw > NP-hard.

Bodlaender's Theorem:
Forevery w, there is a linear-time
algorithm that finds a tree decomposition
of width w, if it exists.

Tree:

Bodlaender's Theorem:
For every w, there is a linear -time
algorithm that finds a tree decomposition
of width w, if it exists.

So, deciding if treewidth is at most w.

Fixed Parameter Tractable: FTP.
Weighted Max Independent Set, 3 -
Coloring, Vertex Coloring, Hamiltonian
Cycle, Subgraph Isomorphism

FPT?

Parameterized
\A@oﬁtmns

&) Springer

Barenholz, D

73

Technische Universiteit
Eindhoven
University of Technology

TU/

Final report

Tree: Decompose

o Solved by seeing it as a linear ordering problem.

A linear ordering of a graph G = (V, E) is a bijection 7 : V — {1,2, ... [V|}. For a
linear ordering x and v ¢ V, we denote by ., the set of vertices that appear before
v in the ordering: 7., = {u € V | a(w) < a(u)}. Likewise, we define 7., 7., and
Toue A linear ordering « of G is a perfect elimination scheme, if for each vertex, its
numbered bors form a clique, that is, for each i € (1.2...
[,rl(,) | {x-2).7(j)} € E A j > i} is a clique. It is well known that a graph has
porfoet elimination scheme, if and only i1t is éhordal, see Goltmbie [1950, Chapter 4

For arbitrary graphs G, a linear ordering x defines a triangulation H of G that has
7 as perfect elimination scheme. The triangulation with respect to v of G is built as
follows: first, set Gy = G, undﬂlenfnrl = 1wn,z;.mubtamedﬁnm6., by adding
an edge between each pair of higher of 771(i). One
can observe that the resulting graph H = G, is chordal, has = as perfect elimination
scheme, and contains G as subgraph.

For our algorithms, we want to avoid working with the triangulation explicitly.
The following predicate allows us to “hide” the triangulation. For a linear-ordering
7, and two vertices v, w € V, we say P.(v,w) holds, i and enly if there is a path
VX1 XL X, w from v to w in G, such that for each i, 1 <i < r, 7(x;) < x(v), and
(%) < w(w). In. otherword.s, P.(v, w) is true, if and only if there is a path from v to

" w such that all internal vertices are before v and w in the ordering x. Note that the
definition implies that P,(v,) is always true when v = w or when (v, u} < E.
With R,(v). we denote the number of numbered vertices w € V for which

Tree: Decompose

IALGORITHM 1: Dynamic-Programming-Treewidth(Graph G = (V, E))

Set TW(#) = —
for i=1tondo
for all sets S ¢ V with |S| =i do
Set TW(S) = min,cs max {TW(S — {v}), | QS — {v}, v)|}
end for
end for

return TW(V)

Barenholz, D

74

Technische Universiteit
T U @ Ehnioven
University of Technology Final report

Bibliography

[1] Wikipedia contributors. (2018, May 21). Competitive programming. In Wikipedia, The
Free Encyclopedia. Retrieved June 1, 2018, from https://en.wikipedia.org/
w/index.php?title=Competitive_programming&oldid=842227680

Barenholz, D 75

https://en.wikipedia.org/w/index.php?title=Competitive_programming&oldid=842227680
https://en.wikipedia.org/w/index.php?title=Competitive_programming&oldid=842227680

	Introduction to CPPS
	Competitive Programming
	Problem Solving
	The Honors Track

	Practice
	Practising tools
	Practice done

	Contests
	Types of contests
	Algorithmical: EAPC
	AI: Battlecode
	Engineering: Google Hashcode

	Seminar
	Appendix Written Code
	Code for BAPC10D - Collatz
	Code for BAPC10I - Keylogger
	Code for BAPC12E - Encoded Message
	Code for CD
	Code for Help Me With The Game
	Code for Emag Eht Htiw Em Pleh
	Code for EAPC17D - Disastrous Doubling

	Appendix EAPC Cheatsheet
	Appendix Seminar Slides

